Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 5(2): 026101, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33834156

RESUMO

Detection of early osteoarthritis to stabilize or reverse the damage to articular cartilage would improve patient function, reduce disability, and limit the need for joint replacement. In this study, we investigated nondestructive photon-processing spectral computed tomography (CT) for the quantitative measurement of the glycosaminoglycan (GAG) content compared to destructive histological and biochemical assay techniques in normal and osteoarthritic tissues. Cartilage-bone cores from healthy bovine stifles were incubated in 50% ioxaglate (Hexabrix®) or 100% gadobenate dimeglumine (MultiHance®). A photon-processing spectral CT (MARS) scanner with a CdTe-Medipix3RX detector imaged samples. Calibration phantoms of ioxaglate and gadobenate dimeglumine were used to determine iodine and gadolinium concentrations from photon-processing spectral CT images to correlate with the GAG content measured using a dimethylmethylene blue assay. The zonal distribution of GAG was compared between photon-processing spectral CT images and histological sections. Furthermore, discrimination and quantification of GAG in osteoarthritic human tibial plateau tissue using the same contrast agents were demonstrated. Contrast agent concentrations were inversely related to the GAG content. The GAG concentration increased from 25 µg/ml (85 mg/ml iodine or 43 mg/ml gadolinium) in the superficial layer to 75 µg/ml (65 mg/ml iodine or 37 mg/ml gadolinium) in the deep layer of healthy bovine cartilage. Deep zone articular cartilage could be distinguished from subchondral bone by utilizing the material decomposition technique. Photon-processing spectral CT images correlated with histological sections in healthy and osteoarthritic tissues. Post-imaging material decomposition was able to quantify the GAG content and distribution throughout healthy and osteoarthritic cartilage using Hexabrix® and MultiHance® while differentiating the underlying subchondral bone.

2.
Eur Radiol ; 27(1): 384-392, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27165137

RESUMO

OBJECTIVES: To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. METHODS: We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. RESULTS: The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. CONCLUSIONS: Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. KEY POINTS: • Contrast-enhanced articular cartilage and subchondral bone can be distinguished using multi-energy CT. • Iodine as a marker of glycosaminoglycan content is quantifiable with multi-energy CT. • Multi-energy CT could track alterations in GAG content occurring in osteoarthritis.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Glicosaminoglicanos/análise , Iodo/farmacocinética , Osteoartrite/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste/farmacocinética , Dissecação , Humanos , Osteoartrite/patologia , Imagens de Fantasmas , Tíbia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA