Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 336: 139203, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315851

RESUMO

Life on earth is dependent on clean water, which is crucial for survival. Water supplies are getting contaminated due to the growing human population and its associated industrialization, urbanization, and chemically improved agriculture. Currently, a large number of people struggle to find clean drinking water, a problem that is particularly serious in developing countries. To meet the enormous demand of clean water around the world, there is an urgent need of advanced technologies and materials that are affordable, easy to use, thermally efficient, portable, environmentally benign, and chemically durable. Physical, chemical and biological methods are used to eliminate insoluble materials and soluble pollutants from wastewater. In addition to cost, each treatment carries its limitations in terms of effectiveness, productivity, environmental effect, sludge generation, pre-treatment demands, operating difficulties, and the creation of potentially hazardous byproducts. To overcome the problems of traditional methods, porous polymers have distinguished themselves as practical and efficient materials for the treatment of wastewater because of their distinctive characteristics such as large surface area, chemical versatility, biodegradability, and biocompatibility. This study overviews improvement in manufacturing methods and the sustainable usage of porous polymers for wastewater treatment and explicitly discusses the efficiency of advanced porous polymeric materials for the removal of emerging pollutants viz. pesticides, dyes, and pharmaceuticals whereby adsorption and photocatalytic degradation are considered to be among the most promising methods for their effective removal. Porous polymers are considered excellent adsorbents for the mitigation of these pollutants as they are cost-effective and have greater porosities to facilitate penetration and adhesion of pollutants, thus enhance their adsorption functionality. Appropriately functionalized porous polymers can offer the potential to eliminate hazardous chemicals and making water useful for a variety of purposes thus, numerous types of porous polymers have been selected, discussed and compared especially in terms of their efficiencies against specific pollutants. The study also sheds light on numerous challenges faced by porous polymers in the removal of contaminants, their solutions and some associated toxicity issues.


Assuntos
Poluentes Ambientais , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Porosidade , Adsorção , Corantes , Polímeros , Purificação da Água/métodos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
2.
Chemosphere ; 293: 133538, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34998849

RESUMO

Increasing demand of food and agriculture is leading us towards the increasing use and introduction of pesticides to the environment. The upright increase of pesticides in water and associated adverse effects have become a great point of concern to develop proficient methods for their mitigation from water. Various different methods have been traditionally employed for this purpose. Recently, nanotechnology has turned out to be the field of prodigious interest for this purpose, and various specific methods were developed and employed to remove pesticides from water. In this study, nanotechnological methods such as adsorption and degradation have been thoroughly discussed along with their applications and limitations where different types of nanoparticles, nanocomposites, nanotubes, and nanomembranes have played a vital role. However, in this study the most commonly adopted method of adsorption is considered to be the better technique due to its low cost, efficiency, and ease of operation. The adsorption kinetic models were described to explain the efficiency of the nano-adrsorbants in order to evaluate the mass transfer processes. However, various degradation methodologies including photocatalysis and catalytic reduction have also been elaborated. Numerous robust metal, metal oxide and functionalized magnetic nanomaterials have been emphasized, categorized, and compared for the removal of pesticides from water. Additionally, current challenges faced by researchers and future directions have also been provided.


Assuntos
Poluentes Ambientais , Nanocompostos , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Nanotecnologia , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA