Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37455011

RESUMO

Oxysterol-binding protein (OSBP) mediates lipid exchange between organelles at membrane contact sites, thereby regulating lipid dynamics and homeostasis. How OSBP's lipid transfer function impacts health and disease remain to be elucidated. In this review, we first summarize the structural characteristics and lipid transport functions of OSBP, and then focus on recent progresses linking OSBP with fatty liver disease, diabetes, lysosome-related diseases, cancer and viral infections, with the aim of discovering novel therapeutic strategies for common human diseases.


Assuntos
Transporte Biológico , Metabolismo dos Lipídeos , Oxisteróis , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Oxisteróis/metabolismo
2.
Gut Microbes ; 15(1): 2221098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37306416

RESUMO

Both growth hormone (GH) and gut microbiota play significant roles in diverse physiological processes, but the crosstalk between them is poorly understood. Despite the regulation of GH by gut microbiota, study on GH's influence on gut microbiota is limited, especially on the impacts of tissue specific GH signaling and their feedback effects on the host. In this study, we profiled gut microbiota and metabolome in tissue-specific GHR knockout mice in the liver (LKO) and adipose tissue (AKO). We found that GHR disruption in the liver rather than adipose tissue affected gut microbiota. It changed the abundance of Bacteroidota and Firmicutes at phylum level as well as abundance of several genera, such as Lactobacillus, Muribaculaceae, and Parasutterella, without affecting α-diversity. Moreover, the impaired liver bile acid (BA) profile in LKO mice was strongly associated with the change of gut microbiota. The BA pools and 12-OH BAs/non-12-OH BAs ratio were increased in the LKO mice, which was due to the induction of CYP8B1 by hepatic Ghr knockout. Consequently, the impaired BA pool in cecal content interacted with gut bacteria, which in turn increased the production of bacteria derived acetic acid, propionic acid, and phenylacetic acid that were possible to participate in the impaired metabolic phenotype of the LKO mice. Collectively, our findings suggested that the liver GH signaling regulates BA metabolism by its direct regulation on CYP8B1, which is an important factor influencing gut microbiota. Our study is significant in exploring gut microbiota modification effects of tissue-specific GH signaling as well as its involvement in gut microbiota-host interaction.


Assuntos
Microbioma Gastrointestinal , Receptores da Somatotropina , Animais , Camundongos , Esteroide 12-alfa-Hidroxilase , Fígado , Bacteroidetes , Ácidos e Sais Biliares
3.
Food Funct ; 13(24): 12799-12813, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421064

RESUMO

Omega-3 PUFAs rich in fish oil are believed to prevent obesity by improving lipid metabolism and regulating gut microbiota. Microalgae oil is considered as an alternative source of omega-3 PUFAs owing to diminishing fish resources. Schizochytrium microalgae oil (SMO), with a high DHA proportion, is a promising source for commercial DHA production. However, its weight-loss and gut microbiota-regulating properties are not well studied. Here we compared the obesity reducing effects of SMO, commercial fish oil (FO) and a weight-loss drug, Orlistat (OL), in a high-fat diet (HFD) induced obesity mouse model. We found that SMO is comparable to commercial FO and OL with regard to weight loss, and it even exhibits the weight-loss effects earlier than FO and OL. It can efficiently inhibit the expression of lipogenesis-related genes and induce the expression of lipolysis-related genes. Moreover, SMO has different gut microbiota modulating effects from those of FO and OL. It does not influence the diversity of bacterial community, but does increase the abundance of several beneficial SCFAs-producing bacteria and inhibits obesity-promoting Desulfovibrio and several pathogens. We also found that SMO recovers the HFD-disturbed metabolic capability of gut microbiota. It can increase the abundance of several metabolism-related pathways, such as those of amino acids, SCFAs and bile acid, and decrease the level of the LPS biosynthesis pathway, which probably contributes to an improvement of lipid metabolism and restoration of the colonic mucosal barrier impaired by HFD. Our data suggest that SMO can be used as a superior dietary supplement for alleviating obesity.


Assuntos
Ácidos Graxos Ômega-3 , Microalgas , Estramenópilas , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Óleos de Peixe/farmacologia , Ácidos Graxos Ômega-3/efeitos adversos , Estramenópilas/genética , Bactérias/genética
4.
Cell Mol Immunol ; 19(11): 1263-1278, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180780

RESUMO

Serine metabolism is reportedly involved in immune cell functions, but whether and how serine metabolism regulates macrophage polarization remain largely unknown. Here, we show that suppressing serine metabolism, either by inhibiting the activity of the key enzyme phosphoglycerate dehydrogenase in the serine biosynthesis pathway or by exogenous serine and glycine restriction, robustly enhances the polarization of interferon-γ-activated macrophages (M(IFN-γ)) but suppresses that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, serine metabolism deficiency increases the expression of IGF1 by reducing the promoter abundance of S-adenosyl methionine-dependent histone H3 lysine 27 trimethylation. IGF1 then activates the p38-dependent JAK-STAT1 axis to promote M(IFN-γ) polarization and suppress STAT6-mediated M(IL-4) activation. This study reveals a new mechanism by which serine metabolism orchestrates macrophage polarization and suggests the manipulation of serine metabolism as a therapeutic strategy for macrophage-mediated immune diseases.


Assuntos
Interleucina-4 , Serina , Interleucina-4/metabolismo , Serina/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Interferon gama/metabolismo
5.
Cell Death Dis ; 13(3): 275, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347118

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is closely associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), which are all complex metabolic disorders. Selenoprotein S (SelS) is an endoplasmic reticulum (ER) resident selenoprotein involved in regulating ER stress and has been found to participate in the occurrence and development of IR and T2DM. However, the potential role and mechanism of SelS in NAFLD remains unclear. Here, we analyzed SelS expression in the liver of high-fat diet (HFD)-fed mice and obese T2DM model (db/db) mice and generated hepatocyte-specific SelS knockout (SelSH-KO) mice using the Cre-loxP system. We showed that hepatic SelS expression levels were significantly downregulated in HFD-fed mice and db/db mice. Hepatic SelS deficiency markedly increased ER stress markers in the liver and caused hepatic steatosis via increased fatty acid uptake and reduced fatty acid oxidation. Impaired insulin signaling was detected in the liver of SelSH-KO mice with decreased phosphorylation levels of insulin receptor substrate 1 (IRS1) and protein kinase B (PKB/Akt), which ultimately led to disturbed glucose homeostasis. Meanwhile, our results showed hepatic protein kinase Cɛ (PKCɛ) activation participated in the negative regulation of insulin signaling in SelSH-KO mice. Moreover, the inhibitory effect of SelS on hepatic steatosis and IR was confirmed by SelS overexpression in primary hepatocytes in vitro. Thus, we conclude that hepatic SelS plays a key role in regulating hepatic lipid accumulation and insulin action, suggesting that SelS may be a potential intervention target for the prevention and treatment of NAFLD and T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
6.
J Genet Genomics ; 49(4): 364-376, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34687945

RESUMO

The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese mouse model of type 2 diabete mellitus (MKR) mouse type 2 diabetes mellitus (T2DM) models. In both mouse models, the diabetic phenotypes, including hyperglycemia, impaired glucose tolerance, and insulin sensitivity, were ameliorated after two or four weeks of intraperitoneal administration of GF. GF lowered blood glucose levels in a dose-dependent manner. Importantly, the restored blood glucose levels could persist ten days after withdrawal of GF treatment. The hepatic AKT/GSK3ß/FoxO1 pathway is shown to be the main target of GF for rebalancing gluconeogenesis and glycogen synthesis in vivo and in vitro. Furthermore, GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway. Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Fulerenos , Glicolipídeos/metabolismo , Glicolipídeos/farmacologia , Glicolipídeos/uso terapêutico , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
7.
Microbiologyopen ; 10(6): e1250, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34964292

RESUMO

Apostichopus japonicus is a useful model for studying organ regeneration, and the gut microbiota is important for host organ regeneration. However, the reconstruction process and the mechanisms of gut microbiota assembly during gut regeneration in sea cucumbers have not been well studied. In the present study, gut regeneration was induced (via evisceration) in A. japonicus, and gut immune responses and bacterial diversity were investigated to reveal gut microbiota assembly and its possible mechanisms during gut regeneration. The results revealed that bacterial community reconstruction involved two stages with distinct assembly mechanisms, where the reconstructed community was initiated from the bacterial consortium in the residual digestive tract and tended to form a novel microbiota in the later stage of reconstruction. Together, the results of immunoenzyme assays, community phylogenetic analysis, and source tracking suggested that the host deterministic process was stronger in the initial stage than in the later stage. The bacterial interactions that occurred were significantly different between the two stages. Positive interactions dominated in the initial stage, while more complex and competitive interactions developed in the later stage. Such a dynamic bacterial community could provide the host with energetic and immune benefits that promote gut regeneration and functional recovery. The results of the present study provide insights into the processes and mechanisms of gut microbiota assembly during intestinal regeneration that are valuable for understanding gut regeneration mechanisms mediated by the microbiota.


Assuntos
Microbioma Gastrointestinal , Regeneração , Stichopus/microbiologia , Stichopus/fisiologia , Animais , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Imunidade , Interações Microbianas , Stichopus/imunologia
8.
Cell Mol Gastroenterol Hepatol ; 11(3): 697-724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33075563

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is becoming a severe liver disorder worldwide. Autophagy plays a critical role in liver steatosis. However, the role of autophagy in NAFLD remains exclusive and under debate. In this study, we investigated the role of S100 calcium binding protein A11 (S100A11) in the pathogenesis of hepatic steatosis. METHODS: We performed liver proteomics in a well-established tree shrew model of NAFLD. The expression of S100A11 in different models of NAFLD was detected by Western blot and/or quantitative polymerase chain reaction. Liver S100A11 overexpression mice were generated by injecting a recombinant adenovirus gene transfer vector through the tail vein and then induced by a high-fat and high-cholesterol diet. Cell lines with S100a11 stable overexpression were established with a recombinant lentiviral vector. The lipid content was measured with either Bodipy staining, Oil Red O staining, gas chromatography, or a triglyceride kit. The autophagy and lipogenesis were detected in vitro and in vivo by Western blot and quantitative polymerase chain reaction. The functions of Sirtuin 1, histone deacetylase 6 (HDAC6), and FOXO1 were inhibited by specific inhibitors. The interactions between related proteins were analyzed by a co-immunoprecipitation assay and immunofluorescence analysis. RESULTS: The expression of S100A11 was up-regulated significantly in a time-dependent manner in the tree shrew model of NAFLD. S100A11 expression was induced consistently in oleic acid-treated liver cells as well as the livers of mice fed a high-fat diet and NAFLD patients. Both in vitro and in vivo overexpression of S100A11 could induce hepatic lipid accumulation. Mechanistically, overexpression of S100A11 activated an autophagy and lipogenesis process through up-regulation and acetylation of the transcriptional factor FOXO1, consequently promoting lipogenesis and lipid accumulation in vitro and in vivo. Inhibition of HDAC6, a deacetylase of FOXO1, showed similar phenotypes to S100A11 overexpression in Hepa 1-6 cells. S100A11 interacted with HDAC6 to inhibit its activity, leading to the release and activation of FOXO1. Under S100A11 overexpression, the inhibition of FOXO1 and autophagy could alleviate the activated autophagy as well as up-regulated lipogenic genes. Both FOXO1 and autophagy inhibition and Dgat2 deletion could reduce liver cell lipid accumulation significantly. CONCLUSIONS: A high-fat diet promotes liver S100A11 expression, which may interact with HDAC6 to block its binding to FOXO1, releasing or increasing the acetylation of FOXO1, thus activating autophagy and lipogenesis, and accelerating lipid accumulation and liver steatosis. These findings indicate a completely novel S100A11-HDAC6-FOXO1 axis in the regulation of autophagy and liver steatosis, providing potential possibilities for the treatment of NAFLD.


Assuntos
Proteína Forkhead Box O1/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas S100/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Hepatócitos , Humanos , Lipogênese/genética , Fígado/patologia , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas S100/genética , Tupaiidae , Regulação para Cima
9.
iScience ; 16: 106-121, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31154207

RESUMO

Growth hormone (GH) binds to its receptor (growth hormone receptor [GHR]) to exert its pleiotropic effects on growth and metabolism. Disrupted GH/GHR actions not only fail growth but also are involved in many metabolic disorders, as shown in murine models with global or tissue-specific Ghr deficiency and clinical observations. Here we constructed an adipose-specific Ghr knockout mouse model Ad-GHRKO and studied the metabolic adaptability of the mice when stressed by high-fat diet (HFD) or cold. We found that disruption of adipose Ghr accelerated dietary obesity but protected the liver from ectopic adiposity through free fatty acid trapping. The heat-producing brown adipose tissue burning and white adipose tissue browning induced by cold were slowed in the absence of adipose Ghr but were recovered after prolonged cold acclimation. We conclude that at the expense of excessive subcutaneous fat accumulation and lower emergent cold tolerance, down-tuning adipose GHR signaling emulates a healthy obesity situation which has metabolic advantages against HFD.

10.
J Mol Endocrinol ; 63(1): 77-91, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31137008

RESUMO

Astragalus polysaccharide (APS) is the main component of Astragalus membranaceus, an anti-diabetic herb being used for thousands of years in Traditional Chinese medicine (TCM). In this study, we aimed to evaluate the impact of APS on hepatic insulin signaling, autophagy and ER stress response in high-fat-diet (HFD)-induced insulin resistance (IR) mice. APS was intra-gastrically administrated and metformin was used as a control medicine. Apart from monitoring the changes in the important parameters of IR progression, the gene and protein expression of the key factors marking the state of hepatic ER stress and autophagic flux were examined. We found that, largely comparable to the metformin regime, APS treatment resulted in an overall improvement of IR, as indicated by better control of body weight and blood glucose/lipid levels, recovery of liver functions and regained insulin sensitivity. In particular, the excessive and pro-apoptotic ER stress response and inhibition of autophagy, as a result of prolonged HFD exposure, were significantly corrected by APS administration, indicating a switch of the cellular fate in favor of cell survival. Using the HepG2/IR cell model, we demonstrated that APS modulated the insulin-initiated phosphorylation cascades in a similar manner to metformin. This study provides a rationale for exploiting the insulin-sensitizing potential of APS, which has a therapeutic performance almost equivalent to metformin, to enrich our options in the treatment of IR.


Assuntos
Astragalus propinquus/química , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Insulina/metabolismo , Polissacarídeos/uso terapêutico , Animais , Citocinas/metabolismo , Teste de Tolerância a Glucose , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Polissacarídeos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
11.
J Am Coll Nutr ; 36(5): 347-356, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28548560

RESUMO

OBJECTIVE: Dietary n-3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acids (EPA) and docosahexaenoic acid (DHA), are proved to be effective in obesity reduction. Microalgal oil (MO) is an important alternative source of n-3 PUFAs that effectively alleviates obesity. The aim of the present study was to explore the anti-obesity effects of microalgal oil from Schizochytrium sp. (SMO) and to compare the effects of 2 SMOs (SMO1 and SMO2) with different levels of purity of n-3 PUFAs on high fat diet (HFD)-induced obesity in male C57BL/6J mice. METHODS: Mice were randomly divided into 5 groups: (1) regular chow (RC); (2) HFD; (3) HFD + fish oil (FO); (4) HFD + SMO1; and (5) HFD + SMO2. Body weight and food intake were weekly monitored. After 16 weeks of treatment, a glucose tolerance test (GTT) and an insulin tolerance test (ITT) were performed. Serum lipid profile, morphological changes in the liver and epididymal white adipose tissue (eWAT), and the mRNA expression of lipid metabolism-related genes were also examined. RESULTS: SMO treatment significantly decreased HFD-induced abdominal fat accumulation, lowered the levels of triglycerides, cholesterol, and low-density lipoprotein, as did the positive control treated with FO. Morphological examination revealed a remarkable reduction in lipid droplet formation in the liver tissue and the particle size of eWAT. An alleviation of inflammation infiltration in eWAT caused by a high-fat diet was also observed. Real-time reverse transcription-polymerase chain reaction analysis examination confirmed that microalgal oil inhibited the gene expression of fatty acid synthase, sterol responsive element-binding protein-1c, and acetyl-CoA carboxylase but promoted that of hormone-sensitive lipase and lipoprotein lipase, carnitine palmitoyltransferase-1, and uncoupling proteins in the liver and eWAT. Moreover, similar anti-obesity effects were obtained with the same dosage but different purity of n-3 PUFAs. CONCLUSIONS: As an alternative n-3 PUFAs resource, dietary intake of SMO might be beneficial to prevent HFD-induced abdominal fat accumulation.


Assuntos
Gordura Abdominal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Microalgas/química , Óleos de Plantas/farmacologia , Animais , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Óleos de Plantas/química
12.
Appl Environ Microbiol ; 81(18): 6098-107, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150451

RESUMO

Bacterial collagenolytic proteases are important because of their essential role in global collagen degradation and because of their virulence in some human bacterial infections. Bacterial collagenolytic proteases include some metalloproteases of the M9 family from Clostridium or Vibrio strains, some serine proteases distributed in the S1, S8, and S53 families, and members of the U32 family. In recent years, there has been remarkable progress in discovering new bacterial collagenolytic proteases and in investigating the collagen-degrading mechanisms of bacterial collagenolytic proteases. This review provides comprehensive insight into bacterial collagenolytic proteases, especially focusing on the structures and collagen-degrading mechanisms of representative bacterial collagenolytic proteases in each family. The roles of bacterial collagenolytic proteases in human diseases and global nitrogen cycling, together with the biotechnological and medical applications for these proteases, are also briefly discussed.


Assuntos
Bactérias/enzimologia , Colágeno/metabolismo , Colagenases/metabolismo , Colagenases/química , Colagenases/genética , Variação Genética , Humanos , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Proteólise
13.
Molecules ; 20(7): 11891-901, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26132910

RESUMO

The protease myroilysin is the most abundant protease secreted by marine sedimental bacterium Myroides profundi D25. As a novel elastase of the M12 family, myroilysin has high elastin-degrading activity and strong collagen-swelling ability, suggesting its promising biotechnological potential. Because myroilysin cannot be maturely expressed in Escherichia coli, it is important to be able to improve the production of myroilysin in the wild strain D25. We optimized the culture conditions of strain D25 for protease production by using single factor experiments. Under the optimized conditions, the protease activity of strain D25 reached 1137 ± 53.29 U/mL, i.e., 174% of that before optimization (652 ± 23.78 U/mL). We then conducted small scale fermentations of D25 in a 7.5 L fermentor. The protease activity of strain D25 in small scale fermentations reached 1546.4 ± 82.65 U/mL after parameter optimization. Based on the small scale fermentation results, we further conducted pilot scale fermentations of D25 in a 200 L fermentor, in which the protease production of D25 reached approximately 1100 U/mL. These results indicate that we successfully set up the small and pilot scale fermentation processes of strain D25 for myroilysin production, which should be helpful for the industrial production of myroilysin and the development of its biotechnological potential.


Assuntos
Bacteroides/metabolismo , Biologia Marinha , Metaloproteases/biossíntese , Meios de Cultura , Fermentação , Nitrogênio/metabolismo , Projetos Piloto , Temperatura
14.
Sci Rep ; 5: 9936, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25905792

RESUMO

Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1' positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1' sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection.


Assuntos
Proteínas de Bactérias/metabolismo , Elastina/metabolismo , Metaloendopeptidases/metabolismo , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Biocatálise , Bovinos , Elastina/química , Elastina/genética , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Metaloendopeptidases/química , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Tropoelastina/genética , Tropoelastina/metabolismo
15.
Nanoscale ; 6(14): 8134-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24922185

RESUMO

D-Spacing is the most significant topographic feature of type I collagen fibril, and it is important for our understanding of the structure and function in collagens. Traditionally, the D-spacing of type I collagen fibril was shown to have a singular value of 67 nm, but recent works indicated that the D-spacing values have a large distribution of up to 10 nm when measured by atomic force microscopy. We found that this large distribution of D-spacing values mainly resulted from image drift during measurement. Note that the D-spacing was homogeneous in a single type I collagen fibril. Our statistical analysis indicated that the D-spacing values of type I collagen fibrils exhibited only a narrow distribution of 2.5 nm around the value of 67 nm. In addition, the D-spacing values of the collagen fibrils were nearly identical not only within a single fibril bundle, but also in different fibril bundles. The measurement of the D-spacing values of collagen may provide important structural information in many research areas such as collagen related diseases, construction of molecular model of collagen, and collagen fibrogenesis.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/ultraestrutura , Microscopia de Força Atômica , Nanoestruturas/química , Tamanho da Partícula
16.
Microb Cell Fact ; 13(1): 13, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24450434

RESUMO

BACKGROUND: Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation to the extreme deep-sea environment, it is still difficult to study how Pseudoalteromonas adapt to the deep-sea environment due to the lack of a genetic manipulation system. The aim of this study is to develop a genetic system in the deep-sea sedimentary bacterium Pseudoalteromonas sp. SM9913, making it possible to perform gene mutation by homologous recombination. RESULTS: The sensitivity of Pseudoalteromonas sp. SM9913 to antibiotic was investigated and the erythromycin resistance gene was chosen as the selective marker. A shuttle vector pOriT-4Em was constructed and transferred into Pseudoalteromonas sp. SM9913 through intergeneric conjugation with an efficiency of 1.8 × 10-3, which is high enough to perform the gene knockout assay. A suicide vector pMT was constructed using pOriT-4Em as the bone vector and sacB gene as the counterselective marker. The epsT gene encoding the UDP-glucose lipid carrier transferase was selected as the target gene for inactivation by in-frame deletion. The epsT was in-frame deleted using a two-step integration-segregation strategy after transferring the suicide vector pMT into Pseudoalteromonas sp. SM9913. The ΔepsT mutant showed approximately 73% decrease in the yield of exopolysaccharides, indicating that epsT is an important gene involved in the EPS production of SM9913. CONCLUSIONS: A conjugal transfer system was constructed in Pseudoalteromonas sp. SM9913 with a wide temperature range for selection and a high transfer efficiency, which will lay the foundation of genetic manipulation in this strain. The epsT gene of SM9913 was successfully deleted with no selective marker left in the chromosome of the host, which thus make it possible to knock out other genes in the same host. The construction of a gene knockout system for Pseudoalteromonas sp. SM9913 will contribute to the understanding of the molecular mechanism of how Pseudoalteromonas adapt to the deep-sea environment.


Assuntos
Genoma Bacteriano , Pseudoalteromonas/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Eritromicina/farmacologia , Técnicas de Inativação de Genes , Vetores Genéticos/metabolismo , Sedimentos Geológicos/microbiologia , Recombinação Homóloga , Testes de Sensibilidade Microbiana , Oceanos e Mares , Polissacarídeos Bacterianos/metabolismo , Pseudoalteromonas/efeitos dos fármacos
17.
J Biol Chem ; 289(9): 6041-53, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24429289

RESUMO

Collagen is an insoluble protein that widely distributes in the extracellular matrix of marine animals. Collagen degradation is an important step in the marine nitrogen cycle. However, the mechanism of marine collagen degradation is still largely unknown. Here, a novel subtilisin-like collagenolytic protease, myroicolsin, which is secreted by the deep sea bacterium Myroides profundi D25, was purified and characterized, and its collagenolytic mechanism was studied. Myroicolsin displays low identity (<30%) to previously characterized subtilisin-like proteases, and it contains a novel domain structure. Protein truncation indicated that the Pro secretion system C-terminal sorting domain in the precursor protein is involved in the cleavage of the N-propeptide, and the linker is required for protein folding during myroicolsin maturation. The C-terminal ß-jelly roll domain did not bind insoluble collagen fiber, suggesting that myroicolsin may degrade collagen without the assistance of a collagen-binding domain. Myroicolsin had broad specificity for various collagens, especially fish-insoluble collagen. The favored residue at the P1 site was basic arginine. Scanning electron microscopy and atomic force microscopy, together with biochemical analyses, confirmed that collagen fiber degradation by myroicolsin begins with the hydrolysis of proteoglycans and telopeptides in collagen fibers and fibrils. Myroicolsin showed strikingly different cleavage patterns between native and denatured collagens. A collagen degradation model of myroicolsin was proposed based on our results. Our study provides molecular insight into the collagen degradation mechanism and structural characterization of a subtilisin-like collagenolytic protease secreted by a deep sea bacterium, shedding light on the degradation mechanism of deep sea sedimentary organic nitrogen.


Assuntos
Proteínas de Bactérias/química , Colágeno/química , Flavobacteriaceae/enzimologia , Água do Mar/microbiologia , Subtilisina/química , Microbiologia da Água , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Colágeno/metabolismo , Flavobacteriaceae/genética , Dados de Sequência Molecular , Subtilisina/genética , Subtilisina/metabolismo
18.
Mol Microbiol ; 90(5): 997-1010, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24112706

RESUMO

A number of proteases in the subtilisin family derived from environmental or pathogenic microorganisms have been reported to be collagenolytic serine proteases. However, their collagen degradation mechanisms remain unclear. Here, the degradation mechanism of type I collagen fibres by the S8 collagenolytic protease MCP-01, from Pseudoalteromonas sp. SM9913, was studied. Atomic force microscopy observation and biochemical analysis confirmed that MCP-01 progressively released single fibrils from collagen fibres and released collagen monomers from fibrils mainly by hydrolysing proteoglycans and telopeptides in the collagen fibres. Structural and mutational analyses indicated that an enlarged substrate-binding pocket, mainly composed of loops 7, 9 and 11, is necessary for collagen recognition and that the acidic and aromatic residues on these loops form a negatively charged, hydrophobic environment for collagen binding. MCP-01 displayed a non-strict preference for peptide bonds with Pro or basic residues at the P1 site and/or Gly at the P1' site in collagen. His211 is a key residue for the P1-basic-residue preference of MCP-01. Our study gives structural and mechanistic insights into collagen degradation of the S8 collagenolytic protease, which is helpful in developing therapeutics for diseases with S8 collagenolytic proteases as pathogenic factors and in studying environmental organic nitrogen degradation mechanisms.


Assuntos
Aminoácidos/metabolismo , Colágeno Tipo I/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Proteoglicanas/metabolismo , Pseudoalteromonas/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Microscopia de Força Atômica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudoalteromonas/química , Pseudoalteromonas/classificação , Especificidade por Substrato , Subtilisina/química , Subtilisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...