Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(1): nwae015, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38328681

RESUMO

The nature of catalysis has been hotly pursued for over a century, and current research is focused on understanding active centers and their electronic structures. Herein, the concept of conductive catalysis is proposed and verified by theoretical simulations and experimental observations. Metallic systems containing buried catalytically active transitional metals and exposed catalytically inert main group metals are constructed, and the electronic interaction between them via metallic bonding is disclosed. Through the electronic interaction, the catalytic properties of subsurface transitional metals (Pd or Rh) can be transferred to outermost main group metals (Al or Mg) for several important transformations like semi-hydrogenation, Suzuki-coupling and hydroformylation. The catalytic force is conductive, in analogy with the magnetic force and electrostatic force. The traditional definition of active centers is challenged by the concept of conductive catalysis and the electronic nature of catalysis is more easily understood. It might provide new opportunities for shielding traditional active centers against poisoning or leaching and allow for precise regulation of their catalytic properties by the conductive layer.

2.
J Am Chem Soc ; 145(41): 22697-22707, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37801691

RESUMO

Studying catalytic hydrogenation reactions on oxide surfaces at the atomic scale has been challenging because of the typical occurrence of these processes at ambient or elevated pressures, rendering them less accessible to atomic-scale techniques. Here, we report an atomic-scale study on H2 dissociation and the hydrogenation of CO and CO2 on ZnO using ambient pressure scanning tunneling microscopy, ambient pressure X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations. We directly visualized the heterolytic dissociation of H2 on ZnO(101̅0) under ambient pressure and found that dissociation reaction does not require the assistance of surface defects. The presence of CO or CO2 on ZnO at 300 K does not impede the availability of surface sites for H2 dissociation; instead, CO can even enhance the stability of coadsorbed hydride species, thereby facilitating their dissociative adsorption. Our results show that hydride is the active species for hydrogenation, while hydroxyl cannot hydrogenate CO/CO2 on ZnO. Both AP studies and DFT calculations showed that the hydrogenation of CO2 on ZnO is thermodynamically and kinetically more favorable compared to that of CO hydrogenation. Our results point toward a two-step mechanism for CO hydrogenation, involving initial oxidation to CO2 at step sites on ZnO followed by reaction with hydride to form formate. These findings provide molecular insights into the hydrogenation of CO/CO2 on ZnO and deepen our understanding of syngas conversion and oxide catalysis in general.

3.
J Am Chem Soc ; 145(26): 14298-14306, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345939

RESUMO

Colloidal chemistry holds promise to prepare uniform and size-controllable pre-catalysts; however, it remains a challenge to unveil the atomic-level transition from pre-catalysts to active catalytic surfaces under the reaction conditions to enable the mechanistic design of catalysts. Here, we report an ambient-pressure X-ray photoelectron spectroscopy study, coupled with in situ environmental transmission electron microscopy, infrared spectroscopy, and theoretical calculations, to elucidate the surface catalytic sites of colloidal Ni nanoparticles for CO2 hydrogenation. We show that Ni nanoparticles with phosphine ligands exhibit a distinct surface evolution compared with amine-capped ones, owing to the diffusion of P under oxidative (air) or reductive (CO2 + H2) gaseous environments at elevated temperatures. The resulting NiPx surface leads to a substantially improved selectivity for CO production, in contrast to the metallic Ni, which favors CH4. The further elimination of surface metallic Ni sites by designing multi-step P incorporation achieves unit selectivity of CO in high-rate CO2 hydrogenation.

4.
J Phys Chem Lett ; 14(19): 4381-4387, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37140346

RESUMO

The structure sensitivity of CO2 activation in the presence of H2 has been identified by ambient-pressure X-ray photoelectron spectroscopy (APXPS) on Ni(111) and Ni(110) surfaces under identical reaction conditions. Based on the APXPS results and computer simulations, we propose that, around room temperature, the hydrogen-assisted activation of CO2 is the major reaction path on Ni(111), while the redox pathway of CO2 prevails on Ni(110). With increasing temperature, the two activation pathways are activated in parallel. While the Ni(111) surface is fully reduced to the metallic state at elevated temperatures, two stable Ni oxide species can be observed on Ni(110). Turnover frequency measurements indicate that the low-coordinated sites on Ni(110) promote the activity and selectivity of CO2 hydrogenation to methane. Our findings provide insights into the role of low-coordinated Ni sites in nanoparticle catalysts for CO2 methanation.

5.
J Phys Chem Lett ; 13(24): 5677-5682, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35709366

RESUMO

Ambient-pressure X-ray photoelectron spectroscopy (APXPS) is commonly used to identify active phases of Pt-based catalysts. Unavoidable beam-induced chemistry under in situ conditions with high-flux X-rays is important yet has often been disregarded. To evaluate beam effects on Pt oxidation, we revisited surface species on Pt(111) and Pt(110) in O2 environments using APXPS. The observed X-ray-induced phenomena strongly depended on pressure and surface orientation. Below 1 mbar of O2, we found only chemisorbed oxygen species on both surfaces. No significant change in Pt(111) was observed with long-time illumination under ≤2 mbar of O2. Under ∼5 mbar with similar oxygen exposure, beam-induced oxidation was apparent on Pt(111) with the formation of abundant surface oxide and chemisorbed oxygen. However, such beam-induced oxidation was strongly suppressed on Pt(110). Understanding these "pressure gap" and surface orientation-dependent beam-induced phenomena is essential for our interpretation of the in situ X-ray results, particularly for higher-pressure experiments with brighter synchrotron sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...