Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36673328

RESUMO

The present study was aimed at developing whey-mango-based mixed beverages and characterizing their physicochemical properties. Three different formulations were prepared by varying proportions of whey and mango (sample-1 = 60:20 mL, sample-2 = 65:15 mL, and sample-3 = 70:10 mL). Prepared beverage samples during 25 days of storage revealed a significant increase in acidity (0.27 ± 0.02−0.64 ± 0.03%), TSS (17.15 ± 0.01−18.20 ± 0.01 °Brix); reducing sugars (3.01 ± 0.01−3.67 ± 0.01%); moisture (74.50 ± 0.02−87.02 ± 0.03%); protein (5.67 ± 0.02−7.58 ± 0.01%); fat (0.97 ± 0.01−1.39 ± 0.04%); and carbohydrate (18.01 ± 0.02−3.45 ± 0.02%). The sedimentation rate was only 1%. The total plate count for the prepared samples ranged from 3.32 ± 0.08 to 3.49 ± 0.15 log CFU/mL while yeast and mold counts varied between 0.48 ± 0.01 to 1.85 ± 0.11 Log CFU/mL. The coliform count was below the detection limit (<1). The overall sensory score revealed that the whey beverage with more mango juice could attain acceptable quality upon processing. Based on the findings, it may be concluded that whey can be utilized with fruits and vegetables to develop whey-based beverages.

2.
Heliyon ; 8(10): e11109, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36281389

RESUMO

Background: The pulp of hog plum (Spondias pinnata L. f. kurz) has been documented as a potential source of nutritional, physiological, and pharmacological purposes due to its phenolic content (TPC) and antioxidant activity. However, an optimal extraction condition for hog plum pulp remains elusive. Optimization of extraction process conditions using Ultrasound-assisted extraction (UAE) technique has recently attracted research interest. Objectives: The present study focused on optimizing the UAE extraction conditions of TPC and antioxidant activities (DPPH and FRAP) from hog plum pulp by using response surface methodology (RSM). Methods: The RSM with a three-factor-three-level Box-Behnken design (BBD) was used to optimize the extraction conditions. The BBD was used to investigate the effects of three independent variables, X1: ultrasonic temperature (40-60 °C), X2: ultrasonic time (30-60 min), and X3: ethanol concentration (40-80%) on TPC, DPPH and FRAP assays. Fifteen experimental trials have been carried out to optimize the UAE extraction conditions. A second-order polynomial model was used for predicting the responses. Statistically, the model was validated using an analysis of variance (ANOVA). Results: The ANOVA results revealed that UAE extraction temperature, time, and ethanol concentration had a significant (p < 0.01) influence on the TPC, DPPH, and FRAP, suggesting that all extraction parameters included in this investigation were crucial to the optimization process. For TPC, DPPH, and FRAP, the R2 values were 0.9976, 0.9943, and 0.9989, respectively, indicating that the models developed based on second-order polynomials were satisfactorily accurate for analyzing interactions between parameters (response and independent variables). RSM analysis showed that the optimal extraction parameters which maximized TPC, DPPH, and FRAP were 52.03 °C temperature, 30 min, time, and 79.99% ethanol. Under optimal conditions, experimental values for TPC, DPPH, and FRAP were 370 ± 26 mg GAE/100g DM, 57 ± 7%, and 7650 ± 460 mg AAE/100 g DM, respectively. The experimental values showed a good agreement with the predicted values with residual standard error values below 0.2% under optimum conditions. Pearson's correlation coefficients (r) demonstrate that the TPC showed a weak positive correlation with DPPH (r = 0.3508) and moderate correlation with FRAP (r = 0.3963). Conclusion: The experimental results agreed with the predicted values, confirming the model's appropriateness and RSM's efficacy in optimizing the UAE extraction conditions. This optimized UAE extraction method may be effective in the industrial extraction process; moreover, further research should be conducted to determine the efficacy of these extracts when applied to food.

3.
Foods ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159469

RESUMO

Bread is a food that is commonly recognized as a very convenient type of food, but it is also easily prone to microbial attack. As a result of bread spoilage, a significant economic loss occurs to both consumers and producers. For years, the bakery industry has sought to identify treatments that make bread safe and with an extended shelf-life to address this economic and safety concern, including replacing harmful chemical preservatives. New frontiers, on the other hand, have recently been explored. Alternative methods of bread preservation, such as microbial fermentation, utilization of plant and animal derivatives, nanofibers, and other innovative technologies, have yielded promising results. This review summarizes numerous research findings regarding the bio-preservation of bread and suggests potential applications of these techniques. Among these techniques, microbial fermentation using lactic acid bacteria strains and yeast has drawn significant interest nowadays because of their outstanding antifungal activity and shelf-life extending capacity. For example, bread slices with Lactobacillus plantarum LB1 and Lactobacillus rossiae LB5 inhibited fungal development for up to 21 days with the lowest contamination score. Moreover, various essential oils and plant extracts, such as lemongrass oil and garlic extracts, demonstrated promising results in reducing fungal growth on bread and other bakery products. In addition, different emerging bio-preservation strategies such as the utilization of whey, nanofibers, active packaging, and modified atmospheric packaging have gained considerable interest in recent days.

4.
J Agric Food Res ; 7: 100258, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35187503

RESUMO

The COVID-19, also known as a coronavirus, is currently wreaking havoc on livelihood, food security, and nutrition security around the world. In developing countries like Bangladesh the situation is far worse. The purpose of this perspective is to highlight the current state and changes of food security in Bangladesh in the context of COVID-19. During the COVID-19 period, the income of a certain set of people fell, which may have contributed to the growth in the poverty rate. It also had an impact on the agro-food systems, supply-value chain, and market levels as a result of the lockdown, movement and social gathering restrictions. The COVID-19 pandemic has an impact on the total food consumption status of the entire country, affecting all segments of the population. To obtain a greater understanding, our analysis identifies current gaps and the pandemic's potential impact from previously published works and reports.

5.
Heliyon ; 7(10): e08133, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34693058

RESUMO

Pectinase is an enzyme having a broad industrial and commercial application. However, higher production costs may be the major constraint for the wide-scale application of pectinase. Therefore, researchers are trying to reduce the pectinase production cost for subsequent application in the industrial processes by using a unique substrate and optimizing the fermentation medium components and process conditions. The main purpose of the current study was to optimize medium composition for pectinase production using Aspergillus niger-ATCC 1640 in the solid-state fermentation. The Response Surface Methodology (RSM) was performed to evaluate the effects of variables, specifically the concentrations of Satkara peel, urea, (NH4)2PO4, NH4NO3, KH2PO4, ZnSO4, and MgSO4.7H2O on pectinase production in the solid substrate. Firstly, a two-factorial design, Plackett-Burman design (PBD) was applied to screen the variables that significantly influenced the pectinase production. After finding the critical variables, 15 experimental runs were carried out using a Box-Behnken design (BBD) to derive a statistical model for optimizing the concentrations of the selected variables. The PBD model revealed that Satkara peel, urea, and (NH4)2SO4 significantly affected the pectinase production. RSM results indicated that the predicted response for pectinase production was in good agreement with experimental data (R2 = 0.9836). Under the optimized condition of Satkara peel (8.4 g/L), urea (0.5 g/L), and (NH4)2SO4 (2.7 g/L), the pectinase activity was predicted to be 0.6178 µmol/mL. In the present study, the experimental pectinase production achieved 0.6045 µmol/mL. The study revealed that optimization through RSM could improve the pectinase production from Satkara peel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...