Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Toxicol Appl Pharmacol ; 484: 116854, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346540

RESUMO

Human adverse drug reactions (ADRs), and in vivo nonclinical adverse and nonadverse findings, were identified in 27 biotherapeutic programs and placed into organ categories to determine translation. The sensitivity of detecting human ADRs was 30.8% with a positive predictive value (PPV) of 53.3% for nonclinical adverse findings; sensitivity increased to 67.3% and PPV fell to 35.0% when including nonadverse findings. Nonclinical findings were associated with a greater likelihood of a human ADR in that organ category, especially for adverse findings [positive likelihood ratio (LR+) >10 (lower 95% confidence interval [CI] of >5)]. The specificity and negative predictive value (NPV) were very high (>85%). A lack of nonclinical findings in an organ category was associated with a lower likelihood of a human ADR in that organ category. About 40-50% of human ADRs and nonclinical adverse findings, and about 30% of nonclinical nonadverse findings, were attributed to pharmacology. Slightly more than half of the human ADRs with a translating nonclinical finding had findings in animals that could be considered very similar. Overall, 38% of nonclinical findings translated to a human ADR at the organ category level. When nonclinical findings did not translate to humans, the cause was usually higher exposures or longer dosing in animals. All programs with human ADRs attributed to immunogenicity also had nonclinical adverse or nonadverse findings related to immunogenicity. Overall, nonclinical adverse and nonadverse findings were useful in predicting human ADRs, especially at an organ category level, and the majority of human ADRs were predicted by nonclinical toxicity studies.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Humanos , Valor Preditivo dos Testes
2.
Front Mol Biosci ; 10: 1214102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664183

RESUMO

Noradrenergic projections from the brainstem locus coeruleus drive arousal, attentiveness, mood, and memory, but specific adrenoceptor (AR) function across the varied brain cell types has not been extensively characterized, especially with agonists. This study reports a pharmacological analysis of brain AR function, offering insights for innovative therapeutic interventions that might serve to compensate for locus coeruleus decline, known to develop in the earliest phases of neurodegenerative diseases. First, ß-AR agonist activities were measured in recombinant cell systems and compared with those of isoprenaline to generate Δlog(Emax/EC50) values, system-independent metrics of agonist activity, that, in turn, provide receptor subtype fingerprints. These fingerprints were then used to assess receptor subtype expression across human brain cell systems and compared with Δlog(Emax/EC50) values arising from ß-arrestin activation or measurements of cAMP response desensitization to assess the possibility of ligand bias among ß-AR agonists. Agonist activity profiles were confirmed to be system-independent and, in particular, revealed ß2-AR functional expression across several human brain cell types. Broad ß2-AR function observed is consistent with noradrenergic tone arising from the locus coeruleus exerting heterocellular neuroexcitatory and homeostatic influence. Notably, Δlog(Emax/EC50) measurements suggest that tested ß-AR agonists do not show ligand bias as it pertains to homologous receptor desensitization in the system examined. Δlog(Emax/EC50) agonist fingerprinting is a powerful means of assessing receptor subtype expression regardless of receptor expression levels or assay readout, and the method may be applicable to future use for novel ligands and tissues expressing any receptor with available reference agonists.

3.
Birth Defects Res ; 115(3): 348-356, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367445

RESUMO

Achondroplasia is an autosomal disorder caused by point mutation in the gene encoding fibroblast growth factor receptor 3 (FGFR3) and resulting in gain of function. Recifercept is a potential disease modifying treatment for achondroplasia and functions as a decoy protein that competes for ligands of the mutated FGFR3. Recifercept is intended to restore normal bone growth by preventing the mutated FGFR3 from negative inhibitory signaling in pediatric patients with achondroplasia. Here we evaluated the potential effects of twice weekly administration of recifercept to juvenile cynomolgus monkeys (approximately 3-months of age at the initiation of dosing) for 6-months. No adverse effects were noted in this study, identifying the high dose as the no-observed-adverse-effect-level and supporting the use of recifercept in pediatric patients from birth. Considering that juvenile toxicity studies in nonhuman primates are not frequently conducted, and when they are conducted they typically utilize animals ≥9 months of age, this study demonstrates the feasibility of executing a juvenile toxicity study in very young monkeys prior to weaning.


Assuntos
Acondroplasia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Animais , Humanos , Criança , Lactente , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/farmacologia , Macaca fascicularis/metabolismo , Acondroplasia/tratamento farmacológico , Acondroplasia/genética , Acondroplasia/metabolismo , Desenvolvimento Ósseo , Osso e Ossos/metabolismo
4.
Chem Res Toxicol ; 35(11): 2133-2144, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287557

RESUMO

Drug-induced liver injury (DILI) is a leading cause of candidate attrition during drug development in the pharmaceutical industry. This study evaluated liver toxicity signals for 249 approved drugs (114 of "most-DILI concern" and 135 of "no-DILI concern") using PharmaPendium and assessed the association between nonclinical and clinical injuries using contingency table analysis. All animal liver findings were combined into eight toxicity categories based on nature and severity. Together, these analyses revealed that cholestasis [odds ratio (OR): 5.02; 95% confidence interval (CI) 1.04-24.03] or liver aminotransferase increases (OR: 1.86; 95% CI 1.09-3.09) in rats and steatosis (OR-1.9; 95% CI 1.03-3.49) or liver aminotransferase increases (OR-2.57; 95% CI 1.4-4.7) in dogs were significant predictors of human liver injury. The predictive value further improved when the liver injury categories were combined into less severe (steatosis, cholestasis, liver aminotransferase increase, hyperbilirubinemia, or jaundice) and more-severe (liver necrosis, acute liver failure, or hepatotoxicity) injuries. In particular, less-severe liver injuries in the following pairs of species predicted human hepatotoxicity {[dog and mouse] (OR: 2.70; 95% CI 1.25-5.84), [dog and rat] (OR-2.61; 95% CI 1.48-4.59), [monkey and mouse] (OR-4.22; 95% CI 1.33-13.32), and [monkey and rat] (OR-2.45; 95% CI 1.15-5.21)} were predictive of human hepatotoxicity. Meanwhile, severe liver injuries in both [dog and rat] (OR-1.9; 95% CI 1.04-3.49) were significant predictors of human liver toxicity. Therefore, we concluded that the occurrence of DILI in humans is highly likely if liver injuries are observed in one rodent and one nonrodent species and that liver aminotransferase increases in dogs and rats can predict DILI in humans. Together, these findings indicate that the liver safety signals observed in animal toxicity studies indicate potential DILI risk in humans and could therefore be used to prioritize small molecules with less potential to cause DILI in humans.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fígado Gorduroso , Humanos , Ratos , Camundongos , Cães , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Transaminases , Haplorrinos
5.
Eur Phys J Spec Top ; 231(18-20): 3297-3315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103099

RESUMO

Immune responses have a crucial role to play against SARS-CoV-2 virus as the adaptive and innate immune systems of the human body help restoring the body to a healthy stage by annihilating this deadly viral infection. Cytokines also play a significant role in modulating a balance between innate and adaptive immune responses but excess of it can have a detrimental affect on critically ill patients. Therefore, this paper is a novel attempt to formulate a within-host mathematical model showing the impact of cytokines storm on healthy cells. The dynamics of the system is analysed which involves basic reproduction number, steady state solutions and global dynamics for disease-free point and endemic equilibrium using geometric approach. Further, an optimal control problem is discussed considering immunomodulatory therapy (targeting cytokines signaling) as control using linear feedback control method to increase the level of healthy cells, which provides vitality for our system. Through numerical simulations, analytic solutions are validated followed by the curve-fit for the cytokines using real data and an optimization algorithm for optimal fit. Finally, sensitivity analysis for the basic reproduction number and the rate of change of healthy cells using Latin Hypercube Sampling method (LHS) is performed. Our finding suggests that immunomodulatory therapy (tocilizumab) can act as a key component to control cytokines storm for critically ill patients to restore the body to a healthy state.

6.
Acta Pharm Sin B ; 11(12): 3857-3868, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024312

RESUMO

Drug-induced liver injury (DILI) is a leading reason for preclinical safety attrition and post-market drug withdrawals. Drug-induced mitochondrial toxicity has been shown to play an essential role in various forms of DILI, especially in idiosyncratic liver injury. This study examined liver injury reports submitted to the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) for drugs associated with hepatotoxicity via mitochondrial mechanisms compared with non-mitochondrial mechanisms of toxicity. The frequency of hepatotoxicity was determined at a group level and individual drug level. A reporting odds ratio (ROR) was calculated as the measure of effect. Between the two DILI groups, reports for DILI involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42-1.45; P < 0.0001) times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. Antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial drugs were the top five drug classes with the highest ROR values. Although the top 20 drugs with the highest ROR values included drugs with both mitochondrial and non-mitochondrial injury mechanisms, the top four drugs (ROR values > 18: benzbromarone, troglitazone, isoniazid, rifampin) were associated with mitochondrial mechanisms of toxicity. The major demographic influence for DILI risk was also examined. There was a higher mean patient age among reports for drugs that were associated with mitochondrial mechanisms of toxicity [56.1 ± 18.33 (SD)] compared to non-mitochondrial mechanisms [48 ± 19.53 (SD)] (P < 0.0001), suggesting that age may play a role in susceptibility to DILI via mitochondrial mechanisms of toxicity. Univariate logistic regression analysis showed that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12-2.26) times more likely to be associated with older patient age, as compared with reports involving patients less than 65 years of age. Compared to males, female patients were 37% less likely (odds ratio: 0.63, 95% CI 0.61-0.64) to be subjects of liver injury reports for drugs associated with mitochondrial toxicity mechanisms. Given the higher proportion of severe liver injury reports among drugs associated with mitochondrial mechanisms of toxicity, it is essential to understand if a drug causes mitochondrial toxicity during preclinical drug development when drug design alternatives, more clinically relevant animal models, and better clinical biomarkers may provide a better translation of drug-induced mitochondrial toxicity risk assessment from animals to humans. Our findings from this study align with mitochondrial mechanisms of toxicity being an important cause of DILI, and this should be further investigated in real-world studies with robust designs.

7.
Mol Cancer Ther ; 19(10): 1970-1980, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788207

RESUMO

The deubiquitinase USP7 regulates the levels of multiple proteins with roles in cancer progression and immune response. Thus, USP7 inhibition may decrease oncogene function, increase tumor suppressor function, and sensitize tumors to DNA-damaging agents. We have discovered a novel chemical series that potently and selectively inhibits USP7 in biochemical and cellular assays. Our inhibitors reduce the viability of multiple TP53 wild-type cell lines, including several hematologic cancer and MYCN-amplified neuroblastoma cell lines, as well as a subset of TP53-mutant cell lines in vitro Our work suggests that USP7 inhibitors upregulate transcription of genes normally silenced by the epigenetic repressor complex, polycomb repressive complex 2 (PRC2), and potentiate the activity of PIM and PI3K inhibitors as well as DNA-damaging agents. Furthermore, oral administration of USP7 inhibitors inhibits MM.1S (multiple myeloma; TP53 wild type) and H526 (small cell lung cancer; TP53 mutant) tumor growth in vivo Our work confirms that USP7 is a promising, pharmacologically tractable target for the treatment of cancer.


Assuntos
Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Modelos Moleculares
8.
Chem Res Toxicol ; 33(7): 1780-1790, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32338883

RESUMO

Drug-induced organ injury is a major reason for drug candidate attrition in preclinical and clinical drug development. The liver, kidneys, and heart have been recognized as the most common organ systems affected in safety-related attrition or the subject of black box warnings and postmarket drug withdrawals. In silico physicochemical property calculations and in vitro assays have been utilized separately in the early stages of the drug discovery and development process to predict drug safety. In this study, we combined physicochemical properties and in vitro cytotoxicity assays including mitochondrial dysfunction to build organ-specific univariate and multivariable logistic regression models to achieve odds ratios for the prediction of clinical hepatotoxicity, nephrotoxicity, and cardiotoxicity using 215 marketed drugs. The multivariable hepatotoxic predictive model showed an odds ratio of 6.2 (95% confidence interval (CI) 1.7-22.8) or 7.5 (95% CI 3.2-17.8) for mitochondrial inhibition or drug plasma Cmax >1 µM for drugs associated with liver injury, respectively. The multivariable nephrotoxicity predictive model showed an odds ratio of 5.8 (95% CI 2.0-16.9), 6.4 (95% CI 1.1-39.3), or 15.9 (95% CI 2.8-89.0) for drug plasma Cmax >1 µM, mitochondrial inhibition, or hydrogen-bond-acceptor atoms >7 for drugs associated with kidney injury, respectively. Conversely, drugs with a total polar surface area ≥75 Å were 79% (odds ratio 0.21, 95% CI 0.061-0.74) less likely to be associated with kidney injury. Drugs belonging to the extended clearance classification system (ECCS) class 4, where renal secretion is the primary clearance mechanism (low permeability drugs that are bases/neutrals), were 4 (95% CI 1.8-9.5) times more likely to to be associated with kidney injury with this data set. Alternatively, ECCS class 2 drugs, where hepatic metabolism is the primary clearance (high permeability drugs that are bases/neutrals) were 77% less likely (odds ratio 0.23 95% CI 0.095-0.54) to to be associated with kidney injury. A cardiotoxicity model was poorly defined using any of these drug physicochemical attributes. Combining in silico physicochemical properties descriptors along with in vitro toxicity assays can be used to build predictive toxicity models to select small molecule therapeutics with less potential to cause liver and kidney organ toxicity.


Assuntos
Bioensaio , Doença Hepática Induzida por Substâncias e Drogas , Descoberta de Drogas , Nefropatias/induzido quimicamente , Modelos Biológicos , Preparações Farmacêuticas/química , Coração/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Modelos Logísticos , Mitocôndrias/efeitos dos fármacos
9.
J Med Chem ; 63(10): 5398-5420, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32302140

RESUMO

USP7 is a promising target for cancer therapy as its inhibition is expected to decrease function of oncogenes, increase tumor suppressor function, and enhance immune function. Using a structure-based drug design strategy, a new class of reversible USP7 inhibitors has been identified that is highly potent in biochemical and cellular assays and extremely selective for USP7 over other deubiquitinases. The succinimide was identified as a key potency-driving motif, forming two strong hydrogen bonds to the allosteric pocket of USP7. Redesign of an initial benzofuran-amide scaffold yielded a simplified ether series of inhibitors, utilizing acyclic conformational control to achieve proper amine placement. Further improvements were realized upon replacing the ether-linked amines with carbon-linked morpholines, a modification motivated by free energy perturbation (FEP+) calculations. This led to the discovery of compound 41, a highly potent, selective, and orally bioavailable USP7 inhibitor. In xenograft studies, compound 41 demonstrated tumor growth inhibition in both p53 wildtype and p53 mutant cancer cell lines, demonstrating that USP7 inhibitors can suppress tumor growth through multiple different pathways.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Descoberta de Drogas/métodos , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Peptidase 7 Específica de Ubiquitina/química , Administração Oral , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X/métodos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Estrutura Terciária de Proteína , Peptidase 7 Específica de Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
Chem Res Toxicol ; 32(1): 156-167, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30525499

RESUMO

Mitochondrial toxicity has been shown to contribute to a variety of organ toxicities such as liver, cardiac, and kidney. In the past decades, two high-throughput applicable screening assays (isolated rat liver mitochondria; glucose-galactose grown HepG2 cells) to assess mitochondrial toxicity have been deployed in many pharmaceutical companies, and numerous publications have demonstrated its usefulness for mechanistic investigations. However, only two publications have demonstrated the utility of these screens as a predictor of human drug-induced liver injury. In the present study, we screened 73 hepatotoxicants, 46 cardiotoxicants, 49 nephrotoxicants, and 60 compounds not known to cause human organ toxicity for their effects on mitochondrial function(s) in the assays mentioned above. Predictive performance was evaluated using specificity and sensitivity of the assays for predicting organ toxicity. Our results show that the predictive performance of the mitochondrial assays are superior for hepatotoxicity as compared to cardiotoxicity and nephrotoxicity (sensitivity 63% vs 33% and 28% with similar specificity of 93%), when the analysis was done at 100* Cmax (drug concentration in human plasma level). We further explored the association of mitochondrial toxicity with physicochemical properties such as calculated log partition coefficient (cLogP), topological polar surface area, ionization status, and molecular weight of the drugs and found that cLogP was most significantly associated mitochondrial toxicity. Since these assays are amenable to higher throughput, we recommend that chemists use these assays to perform structure activity relationship early in the drug discovery process, when chemical matter is abundant. This assures that compounds that lack the propensity to cause mitochondrial dysfunction (and associated organ toxicity) will move forward into animals and humans.


Assuntos
Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Preparações Farmacêuticas/análise , Animais , Físico-Química , Células Hep G2 , Humanos , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Curva ROC , Ratos
11.
Arch Toxicol ; 92(3): 1295-1310, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29167929

RESUMO

Human liver contains various oxidative and conjugative enzymes that can convert nontoxic parent compounds to toxic metabolites or, conversely, toxic parent compounds to nontoxic metabolites. Unlike primary hepatocytes, which contain myriad drug-metabolizing enzymes (DMEs), but are difficult to culture and maintain physiological levels of DMEs, immortalized hepatic cell lines used in predictive toxicity assays are easy to culture, but lack the ability to metabolize compounds. To address this limitation and predict metabolism-induced hepatotoxicity in high-throughput, we developed an advanced miniaturized three-dimensional (3D) cell culture array (DataChip 2.0) and an advanced metabolizing enzyme microarray (MetaChip 2.0). The DataChip is a functionalized micropillar chip that supports the Hep3B human hepatoma cell line in a 3D microarray format. The MetaChip is a microwell chip containing immobilized DMEs found in the human liver. As a proof of concept for generating compound metabolites in situ on the chip and rapidly assessing their toxicity, 22 model compounds were dispensed into the MetaChip and sandwiched with the DataChip. The IC50 values obtained from the chip platform were correlated with rat LD50 values, human C max values, and drug-induced liver injury categories to predict adverse drug reactions in vivo. As a result, the platform had 100% sensitivity, 86% specificity, and 93% overall predictivity at optimum cutoffs of IC50 and C max values. Therefore, the DataChip/MetaChip platform could be used as a high-throughput, early stage, microscale alternative to conventional in vitro multi-well plate platforms and provide a rapid and inexpensive assessment of metabolism-induced toxicity at early phases of drug development.


Assuntos
Técnicas de Cultura de Células/métodos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Enzimas/metabolismo , Análise Serial de Proteínas/métodos , Testes de Toxicidade/métodos , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Enzimas/análise , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , Dispositivos Lab-On-A-Chip , Dose Letal Mediana , Neoplasias Hepáticas/patologia , Miniaturização , Análise Serial de Proteínas/instrumentação , Ratos , Sensibilidade e Especificidade , Testes de Toxicidade/instrumentação
12.
Toxicol In Vitro ; 45(Pt 1): 111-118, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28843493

RESUMO

As the number of cancer survivors continues to grow, awareness of long-term toxicities and impact on quality of life after chemotherapy treatment in cancer survivors has intensified. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common side effects of modern chemotherapy. Animal models are used to study peripheral neuropathy and predict human risk; however, such models are labor-intensive and limited translatability between species has become a major challenge. Moreover, the mechanisms underlying CIPN have not been precisely determined and few human neuronal models to study CIPN exist. Here, we have developed a high-throughput drug-induced neurotoxicity screening model using human iPSC-derived peripheral-like neurons to study the effect of chemotherapy agents on neuronal health and morphology using high content imaging measurements (neurite length and neuronal cell viability). We utilized this model to test various classes of chemotherapeutic agents with known clinical liability to cause peripheral neuropathy such as platinum agents, taxanes, vinca alkaloids, proteasome inhibitors, and anti-angiogenic compounds. The model was sensitive to compounds that cause interference in microtubule dynamics, especially the taxane, epothilone, and vinca alkaloids. Conversely, the model was not sensitive to platinum and anti-angiogenic chemotherapeutics; compounds that are not reported to act directly on neuronal processes. In summary, we believe this model has utility for high-throughput screening and prediction of human risk for CIPN for novel chemotherapeutics.


Assuntos
Antineoplásicos/toxicidade , Células-Tronco Pluripotentes Induzidas , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ensaios de Triagem em Larga Escala , Humanos , Neuritos/efeitos dos fármacos , Neurônios/fisiologia
13.
Bioorg Med Chem Lett ; 26(16): 4003-6, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397500

RESUMO

Many adverse drug reactions are caused by the cytochrome P450 (CYP)-dependent activation of drugs into reactive metabolites. In order to reduce attrition due to metabolism-induced toxicity and to improve the safety of drug candidates, we developed a simple cell viability assay by combining a bioactivation system (human CYP3A4, CYP2D6 and CYP2C9) with Hep3B cells. We screened a series of drugs to explore structural motifs that may be responsible for CYP450-dependent activation caused by reactive metabolite formation, which highlighted specific liabilities regarding certain phenols and anilines.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Trifosfato de Adenosina/metabolismo , Benzobromarona/análogos & derivados , Benzobromarona/metabolismo , Benzobromarona/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromanos/metabolismo , Cromanos/toxicidade , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos , Tiazolidinedionas/metabolismo , Tiazolidinedionas/toxicidade , Troglitazona
14.
Toxicol Sci ; 130(1): 117-31, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843568

RESUMO

Cardiotoxicity remains the number one reason for drug withdrawal from the market, and Food and Drug Administration issued black box warnings, thus demonstrating the need for more predictive preclinical safety screening, especially early in the drug discovery process when much chemical substrate is available. Whereas human-ether-a-go-go related gene screening has become routine to mitigate proarrhythmic risk, the development of in vitro assays predicting additional on- and off-target biochemical toxicities will benefit from cellular models exhibiting true cardiomyocyte characteristics such as native tissue-like mitochondrial activity. Human stem cell-derived tissue cells may provide such a model. This hypothesis was tested using a combination of flux analysis, gene and protein expression, and toxicity-profiling techniques to characterize mitochondrial function in induced pluripotent stem cell (iPSC) derived human cardiomyocytes in the presence of differing carbon sources over extended periods in cell culture. Functional analyses demonstrate that iPSC-derived cardiomyocytes are (1) capable of utilizing anaerobic or aerobic respiration depending upon the available carbon substrate and (2) bioenergetically closest to adult heart tissue cells when cultured in galactose or galactose supplemented with fatty acids. We utilized this model to test a variety of kinase inhibitors with known clinical cardiac liabilities for their potential toxicity toward these cells. We found that the kinase inhibitors showed a dose-dependent toxicity to iPSC cardiomyocytes grown in galactose and that oxygen consumption rates were significantly more affected than adenosine triphosphate production. Sorafenib was found to have the most effect, followed by sunitinib, dasatinib, imatinib, lapatinib, and nioltinib.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Xenobióticos/toxicidade , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Ácidos Graxos/farmacologia , Galactose/farmacologia , Glucose/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Preparações Farmacêuticas , Células-Tronco Pluripotentes/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Testes de Toxicidade
15.
J Bioenerg Biomembr ; 44(4): 421-37, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22689143

RESUMO

High-throughput applicable screens for identifying drug-induced mitochondrial impairment are necessary in the pharmaceutical industry. Hence, we evaluated the XF96 Extracellular Flux Analyzer, a 96-well platform that measures changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of cells. The sensitivity of the platform was bench-marked with known modulators of oxidative phosphorylation and glycolysis. Sixteen therapeutic agents were screened in HepG2 cells for mitochondrial effects. Four of these compounds, thiazolidinediones, were also tested in primary feline cardiomyocytes for cell-type specific effects. We show that the XF96 platform is a robust, sensitive system for analyzing drug-induced mitochondrial impairment in whole cells. We identified changes in cellular respiration and acidification upon addition of therapeutic agents reported to have a mitochondrial effect. Furthermore, we show that respiration and acidification changes upon addition of the thiazoldinediones were cell-type specific, with the rank order of mitochondrial impairment in whole cells being in accord with the known adverse effects of these drugs.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Gatos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Fosforilação Oxidativa/efeitos dos fármacos
16.
Toxicol Sci ; 129(2): 346-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22700542

RESUMO

Fatty acids are an important source of energy. Excessive energy intake results in elevated levels of free fatty acids that are thought to be the pathogenic factors causing metabolic disorders such as dyslipidemia, obesity, insulin resistance, diabetes, and fatty liver. Underlying metabolic disorders have been suggested to be a predisposing factor for drug-induced liver injury. The steadily expanding population with metabolic disease may pose a higher risk for drug-induced toxicity. In order to understand the interaction of free fatty acids and drug-induced toxicity at the cellular level, we explored whether the saturated free fatty acid palmitate could modulate drug-induced cytotoxicity in HepG2 cells. A number of drugs known to induce hepatotoxicity in humans were selected to test this hypothesis. Drugs without reported hepatotoxicity were also tested to evaluate the specificity of the palmitate-induced effects. We demonstrate that palmitate, at sublethal concentrations, was able to potentiate the cytotoxicity and/or apoptosis induced by some but not all drugs tested. The palmitate and drug coincubation potentiated toxicity, which when combined with the plasma maximum concentration (C(max)), allowed us to identify idiosyncratic toxic drugs that were not flagged in previously deployed cytotoxicity assays. Our data suggest that treatment of cells with palmitate improves the sensitivity to detect compounds with risk of inducing idiosyncratic liver toxicity. Furthermore, this assay may be used to identify compounds that have higher safety risks in a population with metabolic syndrome.


Assuntos
Síndrome Metabólica/tratamento farmacológico , Ácido Palmítico/farmacologia , Sinergismo Farmacológico , Células Hep G2 , Humanos
17.
J Biomol Screen ; 17(6): 806-12, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22496094

RESUMO

Methods and techniques used to detect apoptosis have benefited from advances in technologies such as flow cytometry. With a large arsenal of lasers, fluorescent labels, and readily accessible biological targets, it is possible to detect multiple targets with unique combinations of fluorescent spectral signatures from a single sample. Traditional flow cytometry has been limited as a screening tool as the sample throughput has been low, whereas the data analysis and generation of screening relevant results have been complex. The HTFC Screening System running ForeCyt software is an instrument platform designed to perform high-throughput, multiplexed screening with seamless transformation of flow cytometry data into screening hits. We report the results of a screen that simultaneously quantified caspase 3/7 activation, annexin V binding, cell viability, and mitochondrial integrity. Assay performance over 5 days demonstrated robustness, reliability, and performance of the assay. This system is high throughput in that a 384-well plate can be read and fully analyzed within 30 min and is sensitive with an assay window of at least 10-fold for all parameters and a Z' factor of ≥0.75 for all endpoints and time points. From a screen of 231 compounds, 11 representative toxicity profiles highlighting differential activation of apoptotic pathways were identified.


Assuntos
Apoptose/efeitos dos fármacos , Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Anexina A5/imunologia , Anexina A5/metabolismo , Bioensaio/métodos , Caspase 3/análise , Caspase 3/metabolismo , Caspase 7/análise , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células Jurkat/efeitos dos fármacos , Células Jurkat/metabolismo , Mitocôndrias/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Testes de Toxicidade/métodos
18.
Toxicol Appl Pharmacol ; 261(2): 172-80, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521608

RESUMO

Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.


Assuntos
Ciclosporina/toxicidade , Imunossupressores/toxicidade , Ácido Palmítico/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo
19.
Toxicol In Vitro ; 25(2): 580-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21126567

RESUMO

Drug-induced mitochondrial toxicity is a contributing factor to many organ toxicities. The fact that some, but not all members of a particular drug class can induce mitochondrial dysfunction has necessitated the need for predictive screens within the drug development process. One of these screens is a cell viability assay done in two types of media, one containing high-glucose, the other, galactose. Since galactose-grown cells are more susceptible to mitochondrial toxicants than high-glucose-grown cells, this assay distinguishes compounds that cause toxicity primarily through mitochondrial targets from those that cause multifactorial toxicity. However, the assay does not show if compounds that cause multifactorial toxicity cause impairment on mitochondria. To address this problem, we investigated if multiplexing the assay with mitochondrial membrane potential measurements using the fluorescent dye, JC-1, could provide further information. We tested 28 drugs in the multiplexed assay and found that, although mitochondrial toxicants could be detected, no additional information was revealed about compounds that caused multifactorial toxicity. Hence, measurements with JC-1 did not provide additional information beyond what was detected using the cell viability assay. We conclude that even though the multiplexed assay is useful for HTS applications, it provides no additional value over the high-glucose-galactose cell viability assay.


Assuntos
Galactose/farmacologia , Glucose/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura , Microscopia de Fluorescência , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...