Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0148223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37812012

RESUMO

IMPORTANCE: In developed countries, the human diet is predominated by food commodities, which have been manufactured, processed, and stored in a food production facility. Little is known about the application of metagenomic sequencing approaches for detecting foodborne pathogens, such as L. monocytogenes, and characterizing microbial diversity in food production ecosystems. In this work, we investigated the utility of 16S rRNA amplicon and quasimetagenomic sequencing for the taxonomic and phylogenetic classification of Listeria culture enrichments of environmental swabs collected from dairy and seafood production facilities. We demonstrated that single-nucleotide polymorphism (SNP) analyses of L. monocytogenes metagenome-assembled genomes (MAGs) from quasimetagenomic data sets can achieve similar resolution as culture isolate whole-genome sequencing. To further understand the impact of genome coverage on MAG SNP cluster resolution, an in silico downsampling approach was employed to reduce the percentage of target pathogen sequence reads, providing an initial estimate of required MAG coverage for subtyping resolution of L. monocytogenes.


Assuntos
Listeria monocytogenes , Humanos , Listeria monocytogenes/genética , Microbiologia de Alimentos , Filogenia , RNA Ribossômico 16S/genética , Ecossistema , Alimentos Marinhos
2.
J Appl Toxicol ; 43(12): 1899-1915, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551865

RESUMO

We have adapted a semiautomated method for tracking Caenorhabditis elegans spontaneous locomotor activity into a quantifiable assay by developing a sophisticated method for analyzing the time course of measured activity. The 16-h worm Adult Activity Test (wAAT) can be used to measure C. elegans activity levels for efficient screening for pharmacological and toxicity-induced effects. As with any apical endpoint assay, the wAAT is mode of action agnostic, allowing for detection of effects from a broad spectrum of response pathways. With caffeine as a model mild stimulant, the wAAT showed transient hyperactivity followed by reversion to baseline. Mercury chloride (HgCl2 ) produced an early dose-response hyperactivity phase followed by pronounced hypoactivity, a behavior pattern we have termed a toxicant "escape response." Methylmercury chloride (meHgCl) produced a similar pattern to HgCl2 , but at much lower concentrations, a weaker hyperactivity response, and more pronounced hypoactivity. Sodium arsenite (NaAsO2 ) and dimethylarsinic acid (DMA) induced hypoactivity at high concentrations. Acute toxicity, as measured by hypoactivity in C. elegans adults, was ranked: meHgCl > HgCl2 > NaAsO2 = DMA. Caffeine was not toxic with the wAAT at tested concentrations. Methods for conducting the wAAT are described, along with instructions for preparing C. elegans Habitation Medium, a liquid nutrient medium that allows for developmental timing equivalent to that found with C. elegans grown on agar with OP50 Escherichia coli feeder cultures. A de novo mathematical parametric model for adult C. elegans activity and the application of this model in ranking exposure toxicity are presented.


Assuntos
Caenorhabditis elegans , Modelos Teóricos , Animais , Cloreto de Mercúrio/toxicidade , Escherichia coli
3.
BMC Genomics ; 24(1): 165, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016310

RESUMO

BACKGROUND: The Salmonella enterica serovar Newport red onion outbreak of 2020 was the largest foodborne outbreak of Salmonella in over a decade. The epidemiological investigation suggested two farms as the likely source of contamination. However, single nucleotide polymorphism (SNP) analysis of the whole genome sequencing data showed that none of the Salmonella isolates collected from the farm regions were linked to the clinical isolates-preventing the use of phylogenetics in source identification. Here, we explored an alternative method for analyzing the whole genome sequencing data driven by the hypothesis that if the outbreak strain had come from the farm regions, then the clinical isolates would disproportionately contain plasmids found in isolates from the farm regions due to horizontal transfer. RESULTS: SNP analysis confirmed that the clinical isolates formed a single, nearly-clonal clade with evidence for ancestry in California going back a decade. The clinical clade had a large core genome (4,399 genes) and a large and sparsely distributed accessory genome (2,577 genes, at least 64% on plasmids). At least 20 plasmid types occurred in the clinical clade, more than were found in the literature for Salmonella Newport. A small number of plasmids, 14 from 13 clinical isolates and 17 from 8 farm isolates, were found to be highly similar (> 95% identical)-indicating they might be related by horizontal transfer. Phylogenetic analysis was unable to determine the geographic origin, isolation source, or time of transfer of the plasmids, likely due to their promiscuous and transient nature. However, our resampling analysis suggested that observing a similar number and combination of highly similar plasmids in random samples of environmental Salmonella enterica within the NCBI Pathogen Detection database was unlikely, supporting a connection between the outbreak strain and the farms implicated by the epidemiological investigation. CONCLUSION: Horizontally transferred plasmids provided evidence for a connection between clinical isolates and the farms implicated as the source of the outbreak. Our case study suggests that such analyses might add a new dimension to source tracking investigations, but highlights the need for detailed and accurate metadata, more extensive environmental sampling, and a better understanding of plasmid molecular evolution.


Assuntos
Salmonella enterica , Sorogrupo , Cebolas/genética , Fazendas , Filogenia , Plasmídeos/genética , Surtos de Doenças
4.
PeerJ ; 11: e14596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36721781

RESUMO

Background: The accurate identification of SARS-CoV-2 (SC2) variants and estimation of their abundance in mixed population samples (e.g., air or wastewater) is imperative for successful surveillance of community level trends. Assessing the performance of SC2 variant composition estimators (VCEs) should improve our confidence in public health decision making. Here, we introduce a linear regression based VCE and compare its performance to four other VCEs: two re-purposed DNA sequence read classifiers (Kallisto and Kraken2), a maximum-likelihood based method (Lineage deComposition for Sars-Cov-2 pooled samples (LCS)), and a regression based method (Freyja). Methods: We simulated DNA sequence datasets of known variant composition from both Illumina and Oxford Nanopore Technologies (ONT) platforms and assessed the performance of each VCE. We also evaluated VCEs performance using publicly available empirical wastewater samples collected for SC2 surveillance efforts. Bioinformatic analyses were performed with a custom NextFlow workflow (C-WAP, CFSAN Wastewater Analysis Pipeline). Relative root mean squared error (RRMSE) was used as a measure of performance with respect to the known abundance and concordance correlation coefficient (CCC) was used to measure agreement between pairs of estimators. Results: Based on our results from simulated data, Kallisto was the most accurate estimator as it had the lowest RRMSE, followed by Freyja. Kallisto and Freyja had the most similar predictions, reflected by the highest CCC metrics. We also found that accuracy was platform and amplicon panel dependent. For example, the accuracy of Freyja was significantly higher with Illumina data compared to ONT data; performance of Kallisto was best with ARTICv4. However, when analyzing empirical data there was poor agreement among methods and variations in the number of variants detected (e.g., Freyja ARTICv4 had a mean of 2.2 variants while Kallisto ARTICv4 had a mean of 10.1 variants). Conclusion: This work provides an understanding of the differences in performance of a number of VCEs and how accurate they are in capturing the relative abundance of SC2 variants within a mixed sample (e.g., wastewater). Such information should help officials gauge the confidence they can have in such data for informing public health decisions.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Funções Verossimilhança , SARS-CoV-2/genética , Águas Residuárias
5.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579850

RESUMO

MOTIVATION: Scientists seeking to understand the genomic basis of bacterial phenotypes, such as antibiotic resistance, today have access to an unprecedented number of complete and nearly complete genomes. Making sense of these data requires computational tools able to perform multiple-genome comparisons efficiently, yet currently available tools cannot scale beyond several tens of genomes. RESULTS: We describe PRAWNS, an efficient and scalable tool for multiple-genome analysis. PRAWNS defines a concise set of genomic features (metablocks), as well as pairwise relationships between them, which can be used as a basis for large-scale genotype-phenotype association studies. We demonstrate the effectiveness of PRAWNS by identifying genomic regions associated with antibiotic resistance in Acinetobacter baumannii. AVAILABILITY AND IMPLEMENTATION: PRAWNS is implemented in C++ and Python3, licensed under the GPLv3 license, and freely downloadable from GitHub (https://github.com/KiranJavkar/PRAWNS.git). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica , Software , Genômica , Genoma , Bactérias
6.
PLoS One ; 17(9): e0268470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048885

RESUMO

Food production facilities are often routinely tested over time for the presence of foodborne pathogens (e.g., Listeria monocytogenes or Salmonella enterica subsp. enterica). Strains detected in a single sampling event can be classified as transient; positive findings of the same strain across multiple sampling events can be classified as resident pathogens. We analyzed whole-genome sequence (WGS) data from 4,758 isolates (L. monocytogenes = 3,685; Salmonella = 1,073) from environmental samples taken by FDA from 536 U.S. facilities. Our primary objective was to determine the frequency of transient or resident pathogens within food production facilities. Strains were defined as isolates from the same facility that are less than 50 SNP (single-nucleotide polymorphisms) different from one another. Resident pathogens were defined as strains that had more than one isolate collected >59 days apart and from the same facility. We found 1,076 strains (median = 1 and maximum = 21 strains per facility); 180 were resident pathogens, 659 were transient, and 237 came from facilities that had only been sampled once. As a result, 21% of strains (180/ 839) from facilities with positive findings and that were sampled multiple times were found to be resident pathogens; nearly 1 in 4 (23%) of L. monocytogenes strains were found to be resident pathogens compared to 1 in 6 (16%) of Salmonella strains. Our results emphasize the critical importance of preventing the colonization of food production environments by foodborne pathogens, since when colonization does occur, there is an appreciable chance it will become a resident pathogen that presents an ongoing potential to contaminate product.


Assuntos
Listeria monocytogenes , Salmonella enterica , Manipulação de Alimentos , Microbiologia de Alimentos , Variação Genética , Genoma Bacteriano , Listeria monocytogenes/genética , Salmonella/genética , Salmonella enterica/genética
7.
Front Microbiol ; 13: 797997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875579

RESUMO

Whole-genome sequence databases continue to grow. Collection times between samples are also growing, providing both a challenge for comparing recently collected sequence data to historical samples and an opportunity for evolutionary analyses that can be used to refine match criteria. We measured evolutionary rates for 22 Salmonella enterica serotypes. Based upon these measurements, we propose using an evolutionary rate of 1.97 single-nucleotide polymorphisms (SNPs) per year when determining whether genome sequences match.

8.
Front Microbiol ; 12: 714284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659144

RESUMO

Carbapenems-one of the important last-line antibiotics for the treatment of gram-negative infections-are becoming ineffective for treating Acinetobacter baumannii infections. Studies have identified multiple genes (and mechanisms) responsible for carbapenem resistance. In some A. baumannii strains, the presence/absence of putative resistance genes is not consistent with their resistance phenotype-indicating the genomic factors underlying carbapenem resistance in A. baumannii are not fully understood. Here, we describe a large-scale whole-genome genotype-phenotype association study with 349 A. baumannii isolates that extends beyond the presence/absence of individual antimicrobial resistance genes and includes the genomic positions and pairwise interactions of genes. Ten known resistance genes exhibited statistically significant associations with resistance to imipenem, a type of carbapenem: blaOXA-23, qacEdelta1, sul1, mphE, msrE, ant(3")-II, aacC1, yafP, aphA6, and xerD. A review of the strains without any of these 10 genes uncovered a clade of isolates with diverse imipenem resistance phenotypes. Finer resolution evaluation of this clade revealed the presence of a 38.6 kbp conserved chromosomal region found exclusively in imipenem-susceptible isolates. This region appears to host several HTH-type DNA binding transcriptional regulators and transporter genes. Imipenem-susceptible isolates from this clade also carried two mutually exclusive plasmids that contain genes previously known to be specific to imipenem-susceptible isolates. Our analysis demonstrates the utility of using whole genomes for genotype-phenotype correlations in the context of antibiotic resistance and provides several new hypotheses for future research.

9.
Clin Infect Dis ; 73(8): 1537-1539, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34240118

RESUMO

Open-source DNA sequence databases have long been touted as beneficial to public health, including the facilitation of earlier detection and response to infectious disease outbreaks. Of critical importance to harnessing these benefits is the metadata that describe general and other domain-specific attributes (eg, collection location, isolate type) of a sample. Unlike the sequence data, metadata are often incomplete and lack adherence to an international standard. Here, we describe the problem posed by such variable and incomplete metadata in terms of interpretative labor costs (the time and energy necessary to make sense of the signal in the genetic data) and the impact such metadata have on foodborne outbreak detection and response. Improving the quality of sequence-associated metadata would allow for earlier detection of emerging food safety hazards and allow faster response to foodborne outbreaks.


Assuntos
Doenças Transmitidas por Alimentos , Metadados , Surtos de Doenças , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Saúde Pública , Vigilância em Saúde Pública
10.
BMC Genomics ; 22(1): 389, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039264

RESUMO

BACKGROUND: Whole genome sequencing of cultured pathogens is the state of the art public health response for the bioinformatic source tracking of illness outbreaks. Quasimetagenomics can substantially reduce the amount of culturing needed before a high quality genome can be recovered. Highly accurate short read data is analyzed for single nucleotide polymorphisms and multi-locus sequence types to differentiate strains but cannot span many genomic repeats, resulting in highly fragmented assemblies. Long reads can span repeats, resulting in much more contiguous assemblies, but have lower accuracy than short reads. RESULTS: We evaluated the accuracy of Listeria monocytogenes assemblies from enrichments (quasimetagenomes) of naturally-contaminated ice cream using long read (Oxford Nanopore) and short read (Illumina) sequencing data. Accuracy of ten assembly approaches, over a range of sequencing depths, was evaluated by comparing sequence similarity of genes in assemblies to a complete reference genome. Long read assemblies reconstructed a circularized genome as well as a 71 kbp plasmid after 24 h of enrichment; however, high error rates prevented high fidelity gene assembly, even at 150X depth of coverage. Short read assemblies accurately reconstructed the core genes after 28 h of enrichment but produced highly fragmented genomes. Hybrid approaches demonstrated promising results but had biases based upon the initial assembly strategy. Short read assemblies scaffolded with long reads accurately assembled the core genes after just 24 h of enrichment, but were highly fragmented. Long read assemblies polished with short reads reconstructed a circularized genome and plasmid and assembled all the genes after 24 h enrichment but with less fidelity for the core genes than the short read assemblies. CONCLUSION: The integration of long and short read sequencing of quasimetagenomes expedited the reconstruction of a high quality pathogen genome compared to either platform alone. A new and more complete level of information about genome structure, gene order and mobile elements can be added to the public health response by incorporating long read analyses with the standard short read WGS outbreak response.


Assuntos
Listeria monocytogenes , Nanoporos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Listeria monocytogenes/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
11.
BMC Genomics ; 22(1): 114, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568057

RESUMO

BACKGROUND: Processing and analyzing whole genome sequencing (WGS) is computationally intense: a single Illumina MiSeq WGS run produces ~ 1 million 250-base-pair reads for each of 24 samples. This poses significant obstacles for smaller laboratories, or laboratories not affiliated with larger projects, which may not have dedicated bioinformatics staff or computing power to effectively use genomic data to protect public health. Building on the success of the cloud-based Galaxy bioinformatics platform ( http://galaxyproject.org ), already known for its user-friendliness and powerful WGS analytical tools, the Center for Food Safety and Applied Nutrition (CFSAN) at the U.S. Food and Drug Administration (FDA) created a customized 'instance' of the Galaxy environment, called GalaxyTrakr ( https://www.galaxytrakr.org ), for use by laboratory scientists performing food-safety regulatory research. The goal was to enable laboratories outside of the FDA internal network to (1) perform quality assessments of sequence data, (2) identify links between clinical isolates and positive food/environmental samples, including those at the National Center for Biotechnology Information sequence read archive ( https://www.ncbi.nlm.nih.gov/sra/ ), and (3) explore new methodologies such as metagenomics. GalaxyTrakr hosts a variety of free and adaptable tools and provides the data storage and computing power to run the tools. These tools support coordinated analytic methods and consistent interpretation of results across laboratories. Users can create and share tools for their specific needs and use sequence data generated locally and elsewhere. RESULTS: In its first full year (2018), GalaxyTrakr processed over 85,000 jobs and went from 25 to 250 users, representing 53 different public and state health laboratories, academic institutions, international health laboratories, and federal organizations. By mid-2020, it has grown to 600 registered users and processed over 450,000 analytical jobs. To illustrate how laboratories are making use of this resource, we describe how six institutions use GalaxyTrakr to quickly analyze and review their data. Instructions for participating in GalaxyTrakr are provided. CONCLUSIONS: GalaxyTrakr advances food safety by providing reliable and harmonized WGS analyses for public health laboratories and promoting collaboration across laboratories with differing resources. Anticipated enhancements to this resource will include workflows for additional foodborne pathogens, viruses, and parasites, as well as new tools and services.


Assuntos
Metagenômica , Saúde Pública , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento Completo do Genoma
12.
Sci Data ; 7(1): 402, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214563

RESUMO

The US PulseNet and GenomeTrakr laboratory networks work together within the Genomics for Food Safety (Gen-FS) consortium to collect and analyze genomic data for foodborne pathogen surveillance (species include Salmonella enterica, Listeria monocytogenes, Escherichia coli (STECs), and Campylobactor). In 2017 these two laboratory networks started harmonizing their respective proficiency test exercises, agreeing on distributing a single strain-set and following the same standard operating procedure (SOP) for genomic data collection, running a jointly coordinated annual proficiency test exercise. In this data release we are publishing the reference genomes and raw data submissions for the 2017 and 2018 proficiency test exercises.


Assuntos
Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos , Genômica/normas , Laboratórios/normas , Campylobacter/isolamento & purificação , Escherichia coli/isolamento & purificação , Genoma Bacteriano , Listeria monocytogenes/isolamento & purificação , Salmonella enterica/isolamento & purificação , Estados Unidos
13.
Microbiology (Reading) ; 166(5): 453-459, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32100709

RESUMO

In 2017, the US Food and Drug Administration investigated the sources of multiple outbreaks of salmonellosis. Epidemiologic and traceback investigations identified Maradol papayas as the suspect vehicles. During the investigations, the genomes of 55 Salmonella enterica that were isolated from papaya samples were sequenced. Serovar assignments and phylogenetic analysis placed the 55 isolates into ten distinct groups, each representing a different serovar. Within-serovar SNP differences are generally between 0 and 20 SNPs, while the median between-serovar distance is 51 812 SNPs. We observed two groups with SNP distances between 21 and 100 SNPs. These relatively large within-serovar SNP distances may indicate that the isolates represent either diverse populations or multiple, genetically distinct subpopulations. Further inspection of these cases with traceback evidence allowed us to identify an 11th population. We observed that high levels of genomic diversity from individual firms is possible, with one firm yielding five of the ten serovars. Also, high levels of diversity are possible within small geographic regions, as five of the serovars were isolated from papayas that originated from farms located in Armería and Tecomán, Colima. In addition, we identified AMR genes that are present in three of the serovars studied here (aph(3')-lb, aph(6)-ld, tet(C), fosA7, and qnrB19) and we detected the presence of the plasmid IncHI2A among S. Urbana isolates.


Assuntos
Carica/microbiologia , Variação Genética , Infecções por Salmonella/microbiologia , Salmonella enterica/classificação , Salmonella enterica/genética , Surtos de Doenças , Contaminação de Alimentos , Genoma Bacteriano , Genótipo , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Infecções por Salmonella/epidemiologia , Salmonella enterica/isolamento & purificação , Sorogrupo , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
15.
Genome Biol ; 20(1): 286, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31849328

RESUMO

Although it is assumed that contamination in bacterial whole-genome sequencing causes errors, the influences of contamination on clustering analyses, such as single-nucleotide polymorphism discovery, phylogenetics, and multi-locus sequencing typing, have not been quantified. By developing and analyzing 720 Listeria monocytogenes, Salmonella enterica, and Escherichia coli short-read datasets, we demonstrate that within-species contamination causes errors that confound clustering analyses, while between-species contamination generally does not. Contaminant reads mapping to references or becoming incorporated into chimeric sequences during assembly are the sources of those errors. Contamination sufficient to influence clustering analyses is present in public sequence databases.


Assuntos
Contaminação por DNA , Genoma Bacteriano , Sequenciamento Completo do Genoma , Análise por Conglomerados , Escherichia coli/genética , Listeria monocytogenes/genética , Salmonella enterica/genética
16.
Infect Genet Evol ; 73: 214-220, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31039448

RESUMO

We review how FDA surveillance identifies several ways that whole genome sequencing (WGS) improves actionable outcomes for public health and compliance in a case involving Listeria monocytogenes contamination in an ice cream facility. In late August 2017 FDA conducted environmental sampling inside an ice cream facility. These isolates were sequenced and deposited into the GenomeTrakr databases. In September 2018 the Centers for Disease Control and Prevention contacted the Florida Department of Health after finding that the pathogen analyses of three clinical cases of listeriosis (two in 2013, one in 2018) were highly related to the aforementioned L. monocytogenes isolates collected from the ice cream facility. in 2017. FDA returned to the ice cream facility in late September 2018 and conducted further environmental sampling and again recovered L. monocytogenes from environmental subsamples that were genetically related to the clinical cases. A voluntary recall was issued to include all ice cream manufactured from August 2017 to October 2018. Subsequently, FDA suspended this food facility's registration. WGS results for L. monocytogenes found in the facility and from clinical samples clustered together by 0-31 single nucleotide polymorphisms (SNPs). The FDA worked together with the Centers for Disease Control and Prevention, as well as the Florida Department of Health, and the Florida Department of Agriculture and Consumer Services to recall all ice cream products produced by this facility. Our data suggests that when available isolates from food facility inspections are subject to whole genome sequencing and the subsequent sequence data point to linkages between these strains and recent clinical isolates (i.e., <20 nucleotide differences), compliance officials should take regulatory actions early to prevent further potential illness. The utility of WGS for applications related to enforcement of FDA compliance programs in the context of foodborne pathogens is reviewed.


Assuntos
Microbiologia de Alimentos , Sorvetes/microbiologia , Listeria/genética , Listeria/isolamento & purificação , Sequenciamento Completo do Genoma , Indústria Alimentícia , Humanos , Instalações Industriais e de Manufatura
17.
J Clin Microbiol ; 57(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30728194

RESUMO

Foodborne pathogen surveillance in the United States is transitioning from strain identification using restriction digest technology (pulsed-field gel electrophoresis [PFGE]) to shotgun sequencing of the entire genome (whole-genome sequencing [WGS]). WGS requires a new suite of analysis tools, some of which have long histories in academia but are new to the field of public health and regulatory decision making. Although the general workflow is fairly standard for collecting and analyzing WGS data for disease surveillance, there are a number of differences in how the data are collected and analyzed across public health agencies, both nationally and internationally. This impedes collaborative public health efforts, so national and international efforts are underway to enable direct comparison of these different analysis methods. Ultimately, the harmonization efforts will allow the (mutually trusted and understood) production and analysis of WGS data by labs and agencies worldwide, thus improving outbreak response capabilities globally. This review provides a historical perspective on the use of WGS for pathogen tracking and summarizes the efforts underway to ensure the major steps in phylogenomic pipelines used for pathogen disease surveillance can be readily validated. The tools for doing this will ensure that the results produced are sound, reproducible, and comparable across different analytic approaches.


Assuntos
Bactérias/genética , Análise de Dados , Doenças Transmitidas por Alimentos/diagnóstico , Filogenia , Bactérias/patogenicidade , Biologia Computacional/métodos , Biologia Computacional/normas , Surtos de Doenças/prevenção & controle , Eletroforese em Gel de Campo Pulsado , Monitoramento Epidemiológico , Genoma Bacteriano , Humanos , Saúde Pública , Estados Unidos , Sequenciamento Completo do Genoma
18.
J Food Prot ; 81(12): 2082-2089, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30485763

RESUMO

Food production-related facilities (farms, packing houses, etc.) are monitored for foodborne pathogens, and data from these facilities can provide a rich source of information about the population structure and genetic diversity of Salmonella and Listeria. This information is of both academic interest for understanding the evolutionary forces acting on these organisms and of practical interest to those responsible for controlling pathogens in facilities and to those analyzing data from facilities in the context of public health decision making. We have collected information about all positive isolates from facility inspections performed by the U.S. Food and Drug Administration for which whole genome sequencing data are available. The within- and between-facilities observed genetic diversity of isolates was computed and related to the common origin of isolates (as the common collected facility). This relationship provides quantification for assessing the relationship between isolates based on their genetic similarity quantified by single-nucleotide polymorphisms (SNPs). Our results show that if the genetic distance ( D) between two isolates is low, then more likely than not they are from the same facility or have some overlap in their supply chain. For example, if the genetic distance is no more than 20 SNPs, the probability ( P) that two isolates come from the same facility = 0.66 for Salmonella and 0.70 for Listeria. However, if two isolates come from different facilities, their genetic distance is likely large (for Salmonella, P( D > 20 SNPs) = 0.99982; for Listeria, P( D > 20 SNPs) = 0.99949); even if two isolates come from the same facility, their genetic distance is also very likely large (for Salmonella, P( D > 20 SNPs) = 0.794; for Listeria, P( D > 20 SNPs) = 0.692). These results provide insight into what SNP thresholds might be appropriate when determining whether two isolates are from the same facility and thus would be of interest to those investigating foodborne outbreaks and conducting traceback investigations.


Assuntos
Contaminação de Equipamentos , Indústria de Processamento de Alimentos , Listeria , Salmonella , Doenças Transmitidas por Alimentos , Variação Genética , Genoma Bacteriano , Humanos , Listeria/genética , Listeria/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Salmonella/genética , Salmonella/isolamento & purificação
19.
Front Microbiol ; 9: 1482, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042741

RESUMO

Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.

20.
Microb Genom ; 4(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29906258

RESUMO

Pathogen monitoring is becoming more precise as sequencing technologies become more affordable and accessible worldwide. This transition is especially apparent in the field of food safety, which has demonstrated how whole-genome sequencing (WGS) can be used on a global scale to protect public health. GenomeTrakr coordinates the WGS performed by public-health agencies and other partners by providing a public database with real-time cluster analysis for foodborne pathogen surveillance. Because WGS is being used to support enforcement decisions, it is essential to have confidence in the quality of the data being used and the downstream data analyses that guide these decisions. Routine proficiency tests, such as the one described here, have an important role in ensuring the validity of both data and procedures. In 2015, the GenomeTrakr proficiency test distributed eight isolates of common foodborne pathogens to participating laboratories, who were required to follow a specific protocol for performing WGS. Resulting sequence data were evaluated for several metrics, including proper labelling, sequence quality and new single nucleotide polymorphisms (SNPs). Illumina MiSeq sequence data collected for the same set of strains across 21 different laboratories exhibited high reproducibility, while revealing a narrow range of technical and biological variance. The numbers of SNPs reported for sequencing runs of the same isolates across multiple laboratories support the robustness of our cluster analysis pipeline in that each individual isolate cultured and resequenced multiple times in multiple places are all easily identifiable as originating from the same source.


Assuntos
Enterobacteriaceae/genética , Monitoramento Epidemiológico , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Ensaio de Proficiência Laboratorial , Epidemiologia Molecular/métodos , Análise por Conglomerados , Inocuidade dos Alimentos/métodos , Genoma Bacteriano , Humanos , Polimorfismo de Nucleotídeo Único , Saúde Pública/métodos , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...