Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Clin Invest ; 134(15)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-39087469

RESUMO

BACKGROUNDThe use of high-throughput technologies has enabled rapid advancement in the knowledge of host immune responses to pathogens. Our objective was to compare the repertoire, protection, and maternal factors associated with human milk antibodies to infectious pathogens in different economic and geographic locations.METHODSUsing multipathogen protein microarrays, 878 milk and 94 paired serum samples collected from 695 women in 5 high and low-to-middle income countries (Bangladesh, Finland, Peru, Pakistan, and the United States) were assessed for specific IgA and IgG antibodies to 1,607 proteins from 30 enteric, respiratory, and bloodborne pathogens.RESULTSThe antibody coverage across enteric and respiratory pathogens was highest in Bangladeshi and Pakistani cohorts and lowest in the U.S. and Finland. While some pathogens induced a dominant IgA response (Campylobacter, Klebsiella, Acinetobacter, Cryptosporidium, and pertussis), others elicited both IgA and IgG antibodies in milk and serum, possibly related to the invasiveness of the infection (Shigella, enteropathogenic E. coli "EPEC", Streptococcus pneumoniae, Staphylococcus aureus, and Group B Streptococcus). Besides the differences between economic regions and decreases in concentrations over time, human milk IgA and IgG antibody concentrations were lower in mothers with high BMI and higher parity, respectively. In Bangladeshi infants, a higher specific IgA concentration in human milk was associated with delayed time to rotavirus infection, implying protective properties of antirotavirus antibodies, whereas a higher IgA antibody concentration was associated with greater incidence of Campylobacter infection.CONCLUSIONThis comprehensive assessment of human milk antibody profiles may be used to guide the development of passive protection strategies against infant morbidity and mortality.FUNDINGBill and Melinda Gates Foundation grant OPP1172222 (to KMJ); Bill and Melinda Gates Foundation grant OPP1066764 funded the MDIG trial (to DER); University of Rochester CTSI and Environmental Health Sciences Center funded the Rochester Lifestyle study (to RJL); and R01 AI043596 funded PROVIDE (to WAP).


Assuntos
Imunoglobulina A , Imunoglobulina G , Leite Humano , Humanos , Leite Humano/imunologia , Feminino , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Bangladesh/epidemiologia
2.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543471

RESUMO

Diarrhoeagenic E. coli (DEC) significantly contributes to the burden of diarrhoea among children. Currently, there is no approved vaccine against DEC, but several vaccines against the enterotoxigenic E. coli (ETEC) pathotype are in advanced clinical trial stages, including the ETVAX® vaccine, undergoing evaluation in Zambia. This study reports on the reactivity of antibodies from ETVAX® vaccine and placebo recipients in a phase I clinical trial to proteins derived from (DEC) other than ETEC. Plasma samples collected at two time points (prior to any vaccination and post-third dose vaccination) from 16 vaccinated and 4 placebo participants in a phase 1 clinical trial examining the safety, tolerability, and immunogenicity of ETVAX® with dmLT adjuvant were evaluated for IgG response to E. coli antigens other than ETEC using the Pan-DEC protein microarray. This was the first field application of the novel pan-DEC array as a new tool in assessing the antigenic breadth of antibody responses induced by the ETVAX vaccine, as well as to assess early life exposure to DEC pathotypes and other bacterial enteric pathogens. We observed that plasma obtained from ETVAX® and placebo recipients had high antibody reactivity to Ipa, SseC and EspB proteins. These findings suggest that there is high exposure early in life to DEC pathogens, like EPEC, EHEC, EAEC and EIEC in addition to ETEC, in the Zambian population. These immunological observations are consistent with the results of recent epidemiological studies assessing the etiology of diarrheal disease among infants and young children in Zambia.

3.
Vaccines (Basel) ; 11(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37243042

RESUMO

Developing a broadly protective vaccine covering most ETEC variants has been elusive. The most clinically advanced candidate yet is an oral inactivated ETEC vaccine (ETVAX®). We report on the use of a proteome microarray for the assessment of cross-reactivity of anti-ETVAX® IgG antibodies against over 4000 ETEC antigens and proteins. We evaluated 40 (pre-and post-vaccination) plasma samples from 20 Zambian children aged 10-23 months that participated in a phase 1 trial investigating the safety, tolerability, and immunogenicity of ETVAX® adjuvanted with dmLT. Pre-vaccination samples revealed high IgG responses to a variety of ETEC proteins including classical ETEC antigens (CFs and LT) and non-classical antigens. Post-vaccination reactivity to CFA/I, CS3, CS6, and LTB was stronger than baseline among the vaccinated compared to the placebo group. Interestingly, we noted significantly high post-vaccination responses to three non-vaccine ETEC proteins: CS4, CS14, and PCF071 (p = 0.043, p = 0.028, and p = 0.00039, respectively), suggestive of cross-reactive responses to CFA/I. However, similar responses were observed in the placebo group, indicating the need for larger studies. We conclude that the ETEC microarray is a useful tool for investigating antibody responses to numerous antigens, especially because it may not be practicable to include all antigens in a single vaccine.

4.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35446785

RESUMO

The RTS,S/AS01E vaccine targets the circumsporozoite protein (CSP) of the Plasmodium falciparum (P. falciparum) parasite. Protein microarrays were used to measure levels of IgG against 1000 P. falciparum antigens in 2138 infants (age 6-12 weeks) and children (age 5-17 months) from 6 African sites of the phase III trial, sampled before and at 4 longitudinal visits after vaccination. One month postvaccination, IgG responses to 17% of all probed antigens showed differences between RTS,S/AS01E and comparator vaccination groups, whereas no prevaccination differences were found. A small subset of antigens presented IgG levels reaching 4- to 8-fold increases in the RTS,S/AS01E group, comparable in magnitude to anti-CSP IgG levels (~11-fold increase). They were strongly cross-correlated and correlated with anti-CSP levels, waning similarly over time and reincreasing with the booster dose. Such an intriguing phenomenon may be due to cross-reactivity of anti-CSP antibodies with these antigens. RTS,S/AS01E vaccinees with strong off-target IgG responses had an estimated lower clinical malaria incidence after adjusting for age group, site, and postvaccination anti-CSP levels. RTS,S/AS01E-induced IgG may bind strongly not only to CSP, but also to unrelated malaria antigens, and this seems to either confer, or at least be a marker of, increased protection from clinical malaria.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Antígenos de Protozoários , Criança , Humanos , Imunoglobulina G , Lactente , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Vacinação
5.
Microbiol Spectr ; 9(2): e0141621, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704808

RESUMO

The rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the COVID-19 pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of various lengths, and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multicoronavirus arrays to identify specific antibody reactivity. High-level IgG, IgM, and IgA reactivity to structural proteins S, M, and N of SARS-CoV-2, as well as accessory proteins such as ORF3a and ORF7a, were observed that were specific to COVID-19 patients. Antibody reactivity against overlapping 100-, 50-, and 30-amino acid fragments of SARS-CoV-2 proteins was used to identify antigenic regions. Numerous proteins of SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), and the endemic human coronaviruses HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM, and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. Whereas unexposed individuals had minimal reactivity against SARS-CoV-2 proteins that poorly correlated with reactivity against HCoV-NL63 and HCoV-OC43 S2 and N proteins, COVID-19 patient sera had higher correlation between SARS-CoV-2 and HCoV responses, suggesting that de novo antibodies against SARS-CoV-2 cross-react with HCoV epitopes. Array responses were compared with validated spike protein-specific IgG enzyme-linked immunosorbent assays (ELISAs), showing agreement between orthologous methods. SARS-CoV-2 microneutralization titers were low in the COVID-19 patient sera but correlated with array responses against S and N proteins. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients. IMPORTANCE With novel mutant SARS-CoV-2 variants of concern on the rise, knowledge of immune specificities against SARS-CoV-2 proteins is increasingly important for understanding the impact of structural changes in antibody-reactive protein epitopes on naturally acquired and vaccine-induced immunity, as well as broader topics of cross-reactivity and viral evolution. A multi-coronavirus protein microarray used to map the binding of COVID-19 patient antibodies to SARS-CoV-2 proteins and protein fragments as well as to the proteins of four other coronaviruses that infect humans has shown specific regions of SARS-CoV-2 proteins that are highly reactive with patient antibodies and revealed cross-reactivity of these antibodies with other human coronaviruses. These data and the multi-coronavirus protein microarray tool will help guide further studies of the antibody response to COVID-19 and to vaccination against this worldwide pandemic.


Assuntos
Anticorpos Antivirais/imunologia , Coronavirus Humano NL63/imunologia , Coronavirus Humano OC43/imunologia , Epitopos/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Sítios de Ligação de Anticorpos/imunologia , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Fosfoproteínas/imunologia , Análise Serial de Proteínas , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas Virais/imunologia , Proteínas Viroporinas/imunologia
6.
mBio ; 12(3): e0122921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182775

RESUMO

We sought to discover links between antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patient clinical variables, cytokine profiles, and antibodies to endemic coronaviruses. Serum samples from 30 patients of younger (26 to 39 years) and older (69 to 83 years) age groups and with varying clinical severities ranging from outpatient to mechanically ventilated were collected and used to probe a novel multi-coronavirus protein microarray. This microarray contained variable-length overlapping fragments of SARS-CoV-2 spike (S), envelope (E), membrane (M), nucleocapsid (N), and open reading frame (ORF) proteins created through in vitro transcription and translation (IVTT). The array also contained SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus OC43 (HCoV-OC43), and HCoV-NL63 proteins. IgG antibody responses to specific epitopes within the S1 protein region spanning amino acids (aa) 500 to 650 and within the N protein region spanning aa 201 to 300 were found to be significantly higher in older patients and further significantly elevated in those older patients who were ventilated. Additionally, there was a noticeable overlap between antigenic regions and known mutation locations in selected emerging SARS-CoV-2 variants of current clinical consequence (B.1.1.7, B1.351, P.1, CAL20.C, and B.1.526). Moreover, the older age group displayed more consistent correlations of antibody reactivity with systemic cytokine and chemokine responses than the younger adult group. A subset of patients, however, had little or no response to SARS-CoV-2 antigens and disproportionately severe clinical outcomes. Further characterization of these slow-low-responding individuals with cytokine analysis revealed significantly higher interleukin-10 (IL-10), IL-15, and interferon gamma-induced protein 10 (IP-10) levels and lower epidermal growth factor (EGF) and soluble CD40 ligand (sCD40L) levels than those of seroreactive patients in the cohort. IMPORTANCE As numerous viral variants continue to emerge in the coronavirus disease 2019 (COVID-19) pandemic, determining antibody reactivity to SARS-CoV-2 epitopes becomes essential in discerning changes in the immune response to infection over time. This study enabled us to identify specific areas of antigenicity within the SARS-CoV-2 proteome, allowing us to detect correlations of epitopes with clinical metadata and immunological signals to gain holistic insight into SARS-CoV-2 infection. This work also emphasized the risk of mutation accumulation in viral variants and the potential for evasion of the adaptive immune responses in the event of reinfection. We additionally highlighted the correlation of antigenicity between structural proteins of SARS-CoV-2 and endemic HCoVs, raising the possibility of cross-protection between homologous lineages. Finally, we identified a subset of patients with minimal antibody reactivity to SARS-CoV-2 infection, prompting discussion of the potential consequences of this alternative immune response.


Assuntos
Anticorpos Antivirais/sangue , Coronavirus Humano NL63/imunologia , Coronavirus Humano OC43/imunologia , Citocinas/sangue , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Proteínas do Envelope de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Fosfoproteínas/imunologia , Análise Serial de Proteínas , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
7.
PLoS One ; 16(4): e0250317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886668

RESUMO

To identify immunodominant antigens that elicit a humoral immune response following a primary and a secondary genital infection, rhesus monkeys were inoculated cervically with Chlamydia trachomatis serovar D. Serum samples were collected and probed with a protein microarray expressing 864/894 (96.4%) of the open reading frames of the C. trachomatis serovar D genome. The antibody response to the primary infection was analyzed in 72 serum samples from 12 inoculated monkeys. The following criteria were utilized to identify immunodominant antigens: proteins found to be recognized by at least 75% (9/12) of the infected monkeys with at least 15% elevations in signal intensity from week 0 to week 8 post infection. All infected monkeys developed Chlamydia specific serum antibodies. Eight proteins satisfied the selection criteria for immunodominant antigens: CT242 (OmpH-like protein), CT541 (mip), CT681 (ompA), CT381 (artJ), CT443 (omcB), CT119 (incA), CT486 (fliY), and CT110 (groEL). Of these, three antigens, CT119, CT486 and CT381, were not previously identified as immunodominant antigens using non-human primate sera. Following the secondary infection, the antibody responses to the eight immunodominant antigens were analyzed and found to be quite different in intensity and duration to the primary infection. In conclusion, these eight immunodominant antigens can now be tested for their ability to identify individuals with a primary C. trachomatis genital infection and to design vaccine strategies to protect against a primary infection with this pathogen.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/genética , Epitopos Imunodominantes/imunologia , Doenças dos Macacos/imunologia , Doenças Vaginais/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/sangue , Linfócitos B/imunologia , Proteínas de Bactérias/sangue , Infecções por Chlamydia/sangue , Infecções por Chlamydia/microbiologia , Feminino , Genoma Bacteriano , Epitopos Imunodominantes/sangue , Macaca mulatta , Doenças dos Macacos/sangue , Doenças dos Macacos/microbiologia , Fases de Leitura Aberta , Vagina/imunologia , Vagina/microbiologia , Doenças Vaginais/sangue , Doenças Vaginais/microbiologia
8.
Front Immunol ; 11: 614372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643297

RESUMO

Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli, Shigella spp., Salmonella enterica serovar Typhi, Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus, S. pneumoniae, and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.


Assuntos
Especificidade de Anticorpos/imunologia , Bactérias/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Leite Humano/imunologia , Bactérias/patogenicidade , Aleitamento Materno , Estudos de Coortes , Escherichia coli/imunologia , Etiópia/epidemiologia , Feminino , Gâmbia/epidemiologia , Gana/epidemiologia , Humanos , Quênia/epidemiologia , Mycobacterium tuberculosis/imunologia , Peru/epidemiologia , Análise de Componente Principal , Análise Serial de Proteínas , Proteoma , Salmonella enterica/imunologia , Shigella/imunologia , Espanha/epidemiologia , Staphylococcus aureus/imunologia , Streptococcus pneumoniae/imunologia , Suécia/epidemiologia , Estados Unidos/epidemiologia
9.
Sci Rep ; 9(1): 17573, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772281

RESUMO

Considerable effort has been directed toward controlling Johne's disease (JD), a chronic granulomatous intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) in cattle and other ruminants. However, progress in controlling the spread of MAP infection has been impeded by the lack of reliable diagnostic tests that can identify animals early in the infection process and help break the transmission chain. To identify reliable antigens for early diagnosis of MAP infection, we constructed a MAP protein array with 868 purified recombinant MAP proteins, and screened a total of 180 well-characterized serum samples from cows assigned to 4 groups based on previous serological and fecal test results: negative low exposure (NL, n = 30); negative high exposure (NH, n = 30); fecal-positive, ELISA-negative (F + E-, n = 60); and both fecal- and ELISA-positive (F + E+, n = 60). The analyses identified a total of 49 candidate antigens in the NH, F + E-, and F + E+ with reactivity compared with the NL group (p < 0.01), a majority of which have not been previously identified. While some of the antigens were identified as reactive in only one of the groups, others showed reactivity in multiple groups, including NH (n = 28), F + E- (n = 26), and F + E+ (n = 17) groups. Using combinations of top reactive antigens in each group, the results reveal sensitivities of 60.0%, 73.3%, and 81.7% in the NH, F + E-, and F + E+, respectively at 90% specificity, suggesting that early detection of infection in animals may be possible and enable better opportunities to reduce within herd transmission that may be otherwise missed by traditional serological assays that are biased towards more heavily infected animals. Together, the results suggest that several of the novel candidate antigens identified in this study, particularly those that were reactive in the NH and F + E- groups, have potential utility for the early sero-diagnosis of MAP infection.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Doenças dos Bovinos/diagnóstico , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/diagnóstico , Análise Serial de Proteínas/veterinária , Animais , Bovinos , Doenças dos Bovinos/imunologia , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Paratuberculose/imunologia , Testes Sorológicos/métodos , Testes Sorológicos/veterinária
10.
NPJ Vaccines ; 4: 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482013

RESUMO

Enterotoxigenic Escherichia coli (ETEC) infections are a common cause of severe diarrheal illness in low- and middle-income countries. The live-attenuated ACE527 ETEC vaccine, adjuvanted with double mutant heat-labile toxin (dmLT), affords clear but partial protection against ETEC challenge in human volunteers. Comparatively, initial wild-type ETEC challenge completely protects against severe diarrhea on homologous re-challenge. To investigate determinants of protection, vaccine antigen content was compared to wild-type ETEC, and proteome microarrays were used to assess immune responses following vaccination and ETEC challenge. Although molecular interrogation of the vaccine confirmed expression of targeted canonical antigens, relative to wild-type ETEC, vaccine strains were deficient in production of flagellar antigens, immotile, and lacked production of the EtpA adhesin. Similarly, vaccination ± dmLT elicited responses to targeted canonical antigens, but relative to wild-type challenge, vaccine responses to some potentially protective non-canonical antigens including EtpA and the YghJ metalloprotease were diminished or absent. These studies highlight important differences in vaccine and wild-type ETEC antigen content and call attention to distinct immunologic signatures that could inform investigation of correlates of protection, and guide vaccine antigen selection for these pathogens of global importance.

11.
Lab Chip ; 19(9): 1524-1533, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30806409

RESUMO

There is a growing need to screen multiple infections simultaneously rather than diagnosis of one pathogen at a time in order to improve the quality of healthcare while saving initial screening time and reduce costs. This is the first demonstration of a five-step protein array assay for the multiplexed detection of HIV, HPV and HSV antibodies on an integrated microfluidic system. HIV, HPV and HSV reactive antibodies from both serum and saliva were rapidly detected by acoustic streaming-based mixing and pumping to enable an integrated, rapid and simple-to-use multiplexed assay device. We validated this device with 37 serum and saliva samples to verify reactivity of patient antibodies with HIV, HPV and HSV antigens. Our technology can be adapted with different protein microarrays to detect a variety of other infections, thus demonstrating a powerful platform to detect multiple putative protein biomarkers for rapid detection of infectious diseases. This integrated microfluidic protein array platform is the basis of a potent strategy to delay progression of primary infection, reduce the risk of co-infections and prevent onward transmission of infections by point-of-care detection of multiple pathogens in both serum and oral fluids.


Assuntos
Acústica/instrumentação , Imunoensaio/instrumentação , Dispositivos Lab-On-A-Chip , Saliva/virologia , Viroses/sangue , Viroses/diagnóstico , Humanos , Viroses/imunologia
12.
mSphere ; 4(1)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787114

RESUMO

Immunization with sporozoites under chloroquine chemoprophylaxis (CPS) induces distinctly preerythrocytic and long-lasting sterile protection against homologous controlled human malaria infection (CHMI). To identify possible humoral immune correlates of protection, plasma samples were collected from 38 CPS-immunized Dutch volunteers for analysis using a whole Plasmodium falciparum proteome microarray with 7,455 full-length or segmented protein features displaying about 91% of the total P. falciparum proteome. We identified 548 reactive antigens representing 483 unique proteins. Using the breadth of antibody responses for each subject in a mixture-model algorithm, we observed a trimodal pattern, with distinct groups of 16 low responders, 19 medium responders, and 3 high responders. Fifteen out of 16 low responders, 12 of the 19 medium responders, and 3 out of 3 high responders were fully protected from a challenge infection. In the medium-responder group, we identified six novel antigens associated with protection (area under the curve [AUC] value of ≥0.75; P < 0.05) and six other antigens that were specifically increased in nonprotected volunteers (AUC value of ≤0.25; P < 0.05). When used in combination, the multiantigen classifier predicts CPS-induced protective efficacy with 83% sensitivity and 88% specificity. The antibody response patterns characterized in this study represent surrogate markers that may provide rational guidance for clinical vaccine development.IMPORTANCE Infection by Plasmodium parasites has been a major cause of mortality and morbidity in humans for thousands of years. Despite the considerable reduction of deaths, according to the WHO, over 5 billion people are still at risk, with about 216 million worldwide cases occurring in 2016. More compelling, 15 countries in sub-Saharan Africa bore 80% of the worldwide malaria burden. Complete eradication has been challenging, and the development of an affordable and effective vaccine will go a long way in achieving elimination. However, identifying vaccine candidate targets has been difficult. In the present study, we use a highly effective immunization protocol that confers long-lasting sterile immunity in combination with a whole P. falciparum proteome microarray to identify antibody responses associated with protection. This study characterizes a novel antibody profile associated with sterile protective immunity and trimodal humoral responses that sheds light on the possible mechanism of CPS-induced immunity against P. falciparum parasites.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Antimaláricos/administração & dosagem , Biomarcadores/sangue , Cloroquina/administração & dosagem , Malária Falciparum/imunologia , Ensaios Clínicos como Assunto , Voluntários Saudáveis , Humanos , Imunidade Humoral , Malária Falciparum/sangue , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Análise Serial de Proteínas , Proteoma , Esporozoítos/imunologia
13.
mSphere ; 3(4)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068560

RESUMO

Shigella spp. are a major cause of diarrhea and dysentery in children under 5 years old in the developing world. The development of an effective vaccine remains a public health priority, necessitating improved understanding of immune responses to Shigella and identification of protective antigens. We report the development of a core Shigella proteome microarray consisting of 2,133 antigen targets common to all Shigella species. We evaluated the microarray with serum samples from volunteers immunized with either an inactivated whole-cell S. flexneri serotype 2a (Sf2aWC) vaccine or a live attenuated S. flexneri 2a vaccine strain (CVD 1204) or challenged with wild-type S. flexneri 2a (Sf2a challenge). Baseline reactivities to most antigens were detected postintervention in all three groups. Similar immune profiles were observed after CVD 1204 vaccination and Sf2a challenge. Antigens with the largest increases in mean reactivity postintervention were members of the type three secretion system (T3SS), some of which are regarded as promising vaccine targets: these are the invasion plasmid antigens (Ipas) IpaB, IpaC, and IpaD. In addition, new immunogenic targets (IpaA, IpaH, and SepA) were identified. Importantly, immunoreactivities to antigens in the microarray correlated well with antibody titers determined by enzyme-linked immunosorbent assay (ELISA), validating the use of the microarray platform. Finally, our analysis uncovered an immune signature consisting of three conserved proteins (IpaA, IpaB, and IpaC) that was predictive of protection against shigellosis. In conclusion, the Shigella proteome microarray is a robust platform for interrogating serological reactivity to multiple antigens at once and identifying novel targets for the development of broadly protective vaccines.IMPORTANCE Each year, more than 180 million cases of severe diarrhea caused by Shigella occur globally. Those affected (mostly children in poor regions) experience long-term sequelae that severely impair quality of life. Without a licensed vaccine, the burden of disease represents a daunting challenge. An improved understanding of immune responses to Shigella is necessary to support ongoing efforts to identify a safe and effective vaccine. We developed a microarray containing >2,000 proteins common to all Shigella species. Using sera from human adults who received a killed whole-cell or live attenuated vaccine or were experimentally challenged with virulent organisms, we identified new immune-reactive antigens and defined a T3SS protein signature associated with clinical protection.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/análise , Disenteria Bacilar/imunologia , Análise Serial de Proteínas , Proteoma/análise , Vacinas contra Shigella/imunologia , Shigella/imunologia , Administração Oral , Humanos , Análise em Microsséries , Shigella/química , Vacinas contra Shigella/administração & dosagem , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
14.
J Infect Dis ; 218(9): 1436-1446, 2018 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-29800314

RESUMO

Background: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. Enterotoxigenic E coli vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development. Methods: Antibody lymphocyte supernatants (ALS) and sera from 20 naive human volunteers challenged with ETEC strain H10407 and from 10 volunteers rechallenged 4-6 weeks later with the same strain (9 of whom were completely protected on rechallenge) were tested against ETEC proteome microarrays containing 957 antigens. Results: Enterotoxigenic E coli challenge stimulated robust serum and mucosal (ALS) responses to canonical vaccine antigens (CFA/I, and the B subunit of LT) as well as a small number of antigens not presently targeted in ETEC vaccines. These included pathovar-specific secreted proteins (EtpA, EatA) as well as highly conserved E coli antigens including YghJ, flagellin, and pertactin-like autotransporter proteins, all of which have previously afforded protection against ETEC infection in preclinical studies. Conclusions: Taken together, studies reported here suggest that immune responses after ETEC infection involve traditional vaccine targets as well as a select number of more recently identified protein antigens that could offer additional avenues for vaccine development for these pathogens.


Assuntos
Antígenos de Bactérias/imunologia , Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Anticorpos Antibacterianos/imunologia , Proteínas de Transporte/imunologia , Proteínas de Escherichia coli/imunologia , Humanos , Glicoproteínas de Membrana/imunologia , Peptídeo Hidrolases
15.
Front Microbiol ; 8: 1794, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970824

RESUMO

Current diagnostic tests for typhoid fever, the disease caused by Salmonella Typhi, are poor. We aimed to identify serodiagnostic signatures of typhoid fever by assessing microarray signals to 4,445 S. Typhi antigens in sera from 41 participants challenged with oral S. Typhi. We found broad, heterogeneous antibody responses with increasing IgM/IgA signals at diagnosis. In down-selected 250-antigen arrays we validated responses in a second challenge cohort (n = 30), and selected diagnostic signatures using machine learning and multivariable modeling. In four models containing responses to antigens including flagellin, OmpA, HlyE, sipC, and LPS, multi-antigen signatures discriminated typhoid (n = 100) from other febrile bacteremia (n = 52) in Nepal. These models contained combinatorial IgM, IgA, and IgG responses to 5 antigens (ROC AUC, 0.67 and 0.71) or 3 antigens (0.87), although IgA responses to LPS also performed well (0.88). Using a novel systematic approach we have identified and validated optimal serological diagnostic signatures of typhoid fever.

16.
PLoS One ; 12(9): e0184373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863177

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic intestinal inflammatory disease of cattle and other ruminants. JD has a high herd prevalence and causes serious animal health problems and significant economic loss in domesticated ruminants throughout the world. Since serological detection of MAP infected animals during the early stages of infection remains challenging due to the low sensitivity of extant assays, we screened 180 well-characterized serum samples using a whole proteome microarray from Mycobacterium tuberculosis (MTB), a close relative of MAP. Based on extensive testing of serum and milk samples, fecal culture and qPCR for direct detection of MAP, the samples were previously assigned to one of 4 groups: negative low exposure (n = 30, NL); negative high exposure (n = 30, NH); fecal positive, ELISA negative (n = 60, F+E-); and fecal positive, ELISA positive (n = 60, F+E+). Of the 740 reactive proteins, several antigens were serologically recognized early but not late in infection, suggesting a complex and dynamic evolution of the MAP humoral immune response during disease progression. Ordinal logistic regression models identified a subset of 47 candidate proteins with significantly different normalized intensity values (p<0.05), including 12 in the NH and 23 in F+E- groups, suggesting potential utility for the early detection of MAP infected animals. Next, the diagnostic utility of four MAP orthologs (MAP1569, MAP2942c, MAP2609, and MAP1272c) was assessed and reveal moderate to high diagnostic sensitivities (range 48.3% to 76.7%) and specificity (range 96.7% to 100%), with a combined 88.3% sensitivity and 96.7% specificity. Taken together, the results of our analyses have identified several candidate MAP proteins of potential utility for the early detection of MAP infection, as well individual MAP proteins that may serve as the foundation for the next generation of well-defined serological diagnosis of JD in cattle.


Assuntos
Doenças dos Bovinos/diagnóstico , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/diagnóstico , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática , Fezes , Mycobacterium tuberculosis/imunologia , Paratuberculose/sangue , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Regressão , Sensibilidade e Especificidade
17.
Clin Vaccine Immunol ; 24(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28515134

RESUMO

Johne's disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis, is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. avium subsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis, here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing >75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis-infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having ≥70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne's disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne's disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next generation of rationally designed Johne's disease diagnostic assays.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/imunologia , Animais , Bovinos , Testes Diagnósticos de Rotina/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Análise em Microsséries , Mycobacterium tuberculosis/imunologia , Análise Serial de Proteínas , Estados Unidos
18.
PLoS Negl Trop Dis ; 11(1): e0005349, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28141801

RESUMO

BACKGROUND: Leptospirosis is an important zoonotic disease worldwide. Humans usually present a mild non-specific febrile illness, but a proportion of them develop more severe outcomes, such as multi-organ failure, lung hemorrhage and death. Such complications are thought to depend on several factors, including the host immunity. Protective immunity is associated with humoral immune response, but little is known about the immune response mounted during naturally-acquired Leptospira infection. METHODS AND PRINCIPAL FINDINGS: Here, we used protein microarray chip to profile the antibody responses of patients with severe and mild leptospirosis against the complete Leptospira interrogans serovar Copenhageni predicted ORFeome. We discovered a limited number of immunodominant antigens, with 36 antigens specific to patients, of which 11 were potential serodiagnostic antigens, identified at acute phase, and 33 were potential subunit vaccine targets, detected after recovery. Moreover, we found distinct antibody profiles in patients with different clinical outcomes: in the severe group, overall IgM responses do not change and IgG responses increase over time, while both IgM and IgG responses remain stable in the mild patient group. Analyses of individual patients' responses showed that >74% of patients in the severe group had significant IgG increases over time compared to 29% of patients in the mild group. Additionally, 90% of IgM responses did not change over time in the mild group, compared to ~51% in the severe group. CONCLUSIONS: In the present study, we detected antibody profiles associated with disease severity and speculate that patients with mild disease were protected from severe outcomes due to pre-existing antibodies, while patients with severe leptospirosis demonstrated an antibody profile typical of first exposure. Our findings represent a significant advance in the understanding of the humoral immune response to Leptospira infection, and we have identified new targets for the development of subunit vaccines and diagnostic tests.


Assuntos
Anticorpos Antibacterianos/sangue , Leptospira interrogans/imunologia , Leptospirose/imunologia , Proteoma/análise , Adolescente , Adulto , Anticorpos Antibacterianos/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Leptospira interrogans/genética , Leptospira interrogans/isolamento & purificação , Leptospira interrogans/fisiologia , Leptospirose/sangue , Leptospirose/diagnóstico , Leptospirose/microbiologia , Masculino , Análise Serial de Proteínas , Proteoma/imunologia , Testes Sorológicos , Adulto Jovem
19.
mBio ; 7(6)2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881553

RESUMO

Onchocerciasis (river blindness) is a neglected tropical disease that has been successfully targeted by mass drug treatment programs in the Americas and small parts of Africa. Achieving the long-term goal of elimination of onchocerciasis, however, requires additional tools, including drugs, vaccines, and biomarkers of infection. Here, we describe the transcriptome and proteome profiles of the major vector and the human host stages (L1, L2, L3, molting L3, L4, adult male, and adult female) of Onchocerca volvulus along with the proteome of each parasitic stage and of its Wolbachia endosymbiont (wOv). In so doing, we have identified stage-specific pathways important to the parasite's adaptation to its human host during its early development. Further, we generated a protein array that, when screened with well-characterized human samples, identified novel diagnostic biomarkers of O. volvulus infection and new potential vaccine candidates. This immunomic approach not only demonstrates the power of this postgenomic discovery platform but also provides additional tools for onchocerciasis control programs. IMPORTANCE: The global onchocerciasis (river blindness) elimination program will have to rely on the development of new tools (drugs, vaccines, biomarkers) to achieve its goals by 2025. As an adjunct to the completed genomic sequencing of O. volvulus, we used a comprehensive proteomic and transcriptomic profiling strategy to gain a comprehensive understanding of both the vector-derived and human host-derived parasite stages. In so doing, we have identified proteins and pathways that enable novel drug targeting studies and the discovery of novel vaccine candidates, as well as useful biomarkers of active infection.


Assuntos
Onchocerca volvulus/crescimento & desenvolvimento , Onchocerca volvulus/genética , Proteoma , Simbiose , Transcriptoma , Wolbachia/crescimento & desenvolvimento , Wolbachia/genética , Animais , Onchocerca volvulus/química , Wolbachia/química
20.
J Clin Microbiol ; 54(7): 1755-1765, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098957

RESUMO

Tularemia in humans is caused mainly by two subspecies of the Gram-negative facultative anaerobe Francisella tularensis: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). The current serological test for tularemia is based on agglutination of whole organisms, and the reactive antigens are not well understood. Previously, we profiled the antibody responses in type A and B tularemia cases in the United States using a proteome microarray of 1,741 different proteins derived from the type A strain Schu S4. Fifteen dominant antigens able to detect antibodies to both types of infection were identified, although these were not validated in a different immunoassay format. Since type A and B subspecies are closely related, we hypothesized that Schu S4 antigens would also have utility for diagnosing type B tularemia caused by strains from other geographic locations. To test this, we probed the Schu S4 array with sera from 241 type B tularemia cases in Spain. Despite there being no type A strains in Spain, we confirmed the responses against some of the same potential serodiagnostic antigens reported previously, as well as determined the responses against additional potential serodiagnostic antigens. Five potential serodiagnostic antigens were evaluated on immunostrips, and two of these (FTT1696/GroEL and FTT0975/conserved hypothetical protein) discriminated between the Spanish tularemia cases and healthy controls. We conclude that antigens from the type A strain Schu S4 are suitable for detection of antibodies from patients with type B F. tularensis infections and that these can be used for the diagnosis of tularemia in a deployable format, such as the immunostrip.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Francisella tularensis/imunologia , Análise em Microsséries , Proteoma/análise , Testes Sorológicos/métodos , Tularemia/diagnóstico , Adulto , Antígenos de Bactérias/análise , Francisella tularensis/química , Humanos , Espanha , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA