Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 33(10): 790-802, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30166069

RESUMO

Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions.


Assuntos
Ecologia/métodos , Modelos Biológicos
2.
Ann Bot ; 119(1): 81-93, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025287

RESUMO

BACKGROUND AND AIMS: Polyploidization plays a key role in plant evolution. Despite the generally accepted 'minority-cytotype exclusion' theory, the specific mechanisms leading to successful establishment and persistence of new polyploids remain controversial. The majority of newly formed polyploids do not become established, because they are less common, have fewer potential mates or may not be able to compete successfully with co-occurring progenitors at lower ploidy levels. Changes in floral traits and ecological niches have been proposed as important mechanisms to overcome this initial frequency-dependent disadvantage. The aim of this study was to determine whether dodecaploids of the heterostylous P. marginata differ from their hexaploid progenitors in P. marginata and P. allionii for selected floral traits and ecological preferences that might be involved in establishment and persistence, providing a possible explanation for the origin of polyploidized populations. METHODS: Floral morphological traits and ecological niche preferences among dodecaploids and their hexaploid progenitors in P. marginata and P. allionii ,: all restricted to the south-western Alps, were quantified and compared KEY RESULTS: Differences in floral traits were detected between dodecaploids and their closest relatives, but such differences might be too weak to counter the strength of minority cytotype disadvantage and are unlikely to enable the coexistence of different cytotypes. Furthermore, the results suggest the preservation of full distyly and no transition to selfing in dodecaploids. Finally, dodecaploids occur almost exclusively in environments that are predicted to be suitable also for their closest hexaploid relatives. CONCLUSIONS: In light of the results, P. marginata dodecaploids have probably been able to establish and persist by occupying geographical areas not yet filled by their closest relatives without significant evolution in their climatic and pollination niches. Dispersal limitation and minority-cytotype exclusion probably maintain their current range disjunct from those of its close relatives.


Assuntos
Flores/genética , Poliploidia , Primula/genética , Ecossistema , Flores/fisiologia , França , Polinização/genética , Polinização/fisiologia , Primula/fisiologia
3.
Glob Chang Biol ; 20(7): 2286-300, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24375923

RESUMO

Ongoing rapid climate change is predicted to cause local extinction of plant species in mountain regions. However, some plant species could have persisted during Quaternary climate oscillations without shifting their range, despite the limited evidence from fossils. Here, we tested two candidate mechanisms of persistence by comparing the macrorefugia and microrefugia (MR) hypotheses. We used the rare and endemic Saxifraga florulenta as a model taxon and combined ensembles of species distribution models (SDMs) with a high-resolution paleoclimatic and topographic dataset to reconstruct its potential current and past distribution since the last glacial maximum. To test the macrorefugia hypothesis, we verified whether the species could have persisted in or shifted to geographic areas defined by its realized niche. We then identified potential MR based on climatic and topographic properties of the landscape and applied refined scenarios of MR dynamics and functions over time. Last, we quantified the number of known occurrences that could be explained by either the macrorefugia or MR model. A consensus of two or three SDM techniques predicted absence between 14-10, 3-4 and 1 ka bp, which did not support the macrorefugia model. In contrast, we showed that S. florulenta could have contracted into MR during periods of absence predicted by the SDMs and later re-colonized suitable areas according to the macrorefugia model. Assuming a limited and realistic seed dispersal distance for our species, we explained a large number of the current occurrences (61-96%). Additionally, we showed that MR could have facilitated range expansions or shifts of S. florulenta. Finally, we found that the most recent and the most stable MR were the ones closest to current occurrences. Hence, we propose a novel paradigm to explain plant persistence by highlighting the importance of supporting functions of MR when forecasting the fate of plant species under climate change.


Assuntos
Ecossistema , Dispersão Vegetal , Saxifragaceae/fisiologia , Altitude , Mudança Climática , França , Itália , Modelos Biológicos
4.
Oecologia ; 171(3): 663-78, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23306445

RESUMO

Phenological events, such as the initiation and the end of seasonal growth, are thought to be under strong evolutionary control because of their influence on tree fitness. Although numerous studies highlighted genetic differentiation in phenology among populations from contrasting climates, it remains unclear whether local adaptation could restrict phenological plasticity in response to current warming. Seedling populations of seven deciduous tree species from high and low elevations in the Swiss Alps were investigated in eight common gardens located along two elevational gradients from 400 to 1,700 m. We addressed the following questions: are there genetic differentiations in phenology between populations from low and high elevations, and are populations from the upper elevational limit of a species' distribution able to respond to increasing temperature to the same extent as low-elevation populations? Genetic variation of leaf unfolding date between seedlings from low and high populations was detected in six out of seven tree species. Except for beech, populations from high elevations tended to flush later than populations from low elevations, emphasizing that phenology is likely to be under evolutionary pressure. Furthermore, seedlings from high elevation exhibited lower phenological plasticity to temperature than low-elevation provenances. This difference in phenological plasticity may reflect the opposing selective forces involved (i.e. a trade-off between maximizing growing season length and avoiding frost damages). Nevertheless, environmental effects were much stronger than genetic effects, suggesting a high phenological plasticity to enable tree populations to track ongoing climate change, which includes the risk of tracking unusually warm springs followed by frost.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Adaptação Fisiológica , Altitude , Clima , Mudança Climática , Variação Genética , Estações do Ano , Suíça , Temperatura , Árvores/genética
5.
Glob Ecol Biogeogr ; 22(8): 933-941, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790524

RESUMO

AIM: Understanding the stability of realized niches is crucial for predicting the responses of species to climate change. One approach is to evaluate the niche differences of populations of the same species that occupy regions that are geographically disconnected. Here, we assess niche conservatism along thermal gradients for 26 plant species with a disjunct distribution between the Alps and the Arctic. LOCATION: European Alps and Norwegian Finnmark. METHODS: We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two regions. We assessed niche conservatism through a multispecies comparison and analysed species rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air temperatures at 2 m above ground level and (2) elevation distances to the tree line (TLD) for the two regions. We assessed whether observed relationships were close to those predicted under thermal limit conservatism. RESULTS: We found a weak similarity in species ranking at the warm thermal limits. The range of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found a stronger similarity in species ranking and correspondence at the cold thermal limit along the gradients of 2-m temperature and TLD. Yet along the 2-m temperature gradient the cold thermal limits of species in the Alps were lower on average than those in Finnmark. MAIN CONCLUSION: We found low conservatism of the warm thermal limits but a stronger conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal limit are likely to modulate species responses more strongly than at the cold limit. The differing biotic context between the two regions is probably responsible for the observed differences in realized niches.

6.
Alp Bot ; 123(2): 41-53, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790594

RESUMO

Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial-temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution.

7.
Trends Ecol Evol ; 23(3): 149-58, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18289716

RESUMO

Niche conservatism, the tendency of a species niche to remain unchanged over time, is often assumed when discussing, explaining or predicting biogeographical patterns. Unfortunately, there has been no basis for predicting niche dynamics over relevant timescales, from tens to a few hundreds of years. The recent application of species distribution models (SDMs) and phylogenetic methods to analysis of niche characteristics has provided insight to niche dynamics. Niche shifts and conservatism have both occurred within the last 100 years, with recent speciation events, and deep within clades of species. There is increasing evidence that coordinated application of these methods can help to identify species which likely fulfill one key assumption in the predictive application of SDMs: an unchanging niche. This will improve confidence in SDM-based predictions of the impacts of climate change and species invasions on species distributions and biodiversity.


Assuntos
Ecossistema , Geografia , Modelos Teóricos , Filogenia , Especificidade da Espécie
8.
Ecol Lett ; 11(4): 357-69, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18279357

RESUMO

The usefulness of species distribution models (SDMs) in predicting impacts of climate change on biodiversity is difficult to assess because changes in species ranges may take decades or centuries to occur. One alternative way to evaluate the predictive ability of SDMs across time is to compare their predictions with data on past species distributions. We use data on plant distributions, fossil pollen and current and mid-Holocene climate to test the ability of SDMs to predict past climate-change impacts. We find that species showing little change in the estimated position of their realized niche, with resulting good model performance, tend to be dominant competitors for light. Different mechanisms appear to be responsible for among-species differences in model performance. Confidence in predictions of the impacts of climate change could be improved by selecting species with characteristics that suggest little change is expected in the relationships between species occurrence and climate patterns.


Assuntos
Clima , Ecossistema , Geografia , Modelos Biológicos , Árvores , Europa (Continente) , Fósseis , Análise Multivariada , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...