Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Access Microbiol ; 4(1): 000323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252757

RESUMO

Human norovirus (HuNoV) is a highly contagious pathogenic virus that is transmitted through contaminated food, water, high-touch surfaces and aerosols. Globally, there are an estimated 685 million infections annually due to norovirus, including 200 million affecting children under the age of 5. HuNoV causes approximately 50, 000 child deaths per year and costs an estimated USD $60 billion annually in healthcare. This study sought to determine the inactivation profile of ultraviolet subtype C (UVC) against norovirus using a UVC light-emitting diode (LED) array, KL265-50V-SM-WD. The array emitted radiation at 269 nm peak wavelength and a measured fluence of 1.25 mW cm-2 at a 7 cm source-surface distance. Since the HuNoV is not cultivable, the study utilized feline calicivirus (FCV) ATCC VR-782, a recommended surrogate as challenge organism. The test followed modified ASTM E2197. Assessment of virus inactivation was performed using a plaque assay method. With irradiance at a UVC dose of 22.5 mJ cm-2, the study obtained 99.9 % virus reduction (3 log reduction). The results demonstrate that the UVC LED array can provide effective inactivation of HuNoV.

2.
Microbiologyopen ; 11(1): e1261, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212481

RESUMO

Candida auris is an emerging fungal superbug of worldwide interest. It is associated with high mortality rates and exhibits increased resistance to antifungals. Ultraviolet subtype C (UVC) light can be used to disinfect surfaces to mitigate its spread. The objectives of this study were (1) To investigate UVC disinfection performances and wavelength sensitivity of C. auris. (2) To evaluate the UVC dose required for the prevention of biofilm formation on stainless-steel, plastic (polystyrene), and poly-cotton fabric surfaces. C. auris was grown following standard procedures. The study utilized six different UVC LED arrays with wavelengths between 252 and 280 nm. Arrays were set at similar intensities, to obtain doses of 5-40 mJ cm-2 and similar irradiation time. Disinfection performance for each array was determined using log reduction value (LRV) and percentage reduction by comparing the controls against the irradiated treatments. Evaluation of the ability of 267 nm UVC LEDs to prevent C. auris biofilm formation was investigated using stainless-steel, plastic coupons, and poly-cotton fabric. Peak sensitivity to UVC disinfection was between 267 and 270 nm. With 20 mJ cm-2 , the study obtained ≥LRV3. On stainless-steel coupons, 30 mJ cm-2 was sufficient to prevent biofilm formation, while on plastic, this required 10 mJ cm-2 . A dose of 60 mJ cm-2 reduced biofilms on poly-cotton fabric significantly (R2 = 0.9750, p = 0.0002). The study may allow for the design and implementation of disinfection systems.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida auris/efeitos dos fármacos , Candida auris/efeitos da radiação , Raios Ultravioleta , Biofilmes/efeitos da radiação , Candida auris/patogenicidade , Candida auris/fisiologia , Resistência a Múltiplos Medicamentos/efeitos da radiação , Raios Ultravioleta/classificação
3.
Pathogens ; 11(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35215169

RESUMO

Human noroviruses (HuNoVs) are a major cause of gastroenteritis and are associated with high morbidity because of their ability to survive in the environment and small inoculum size required for infection. Norovirus is transmitted through water, food, high touch-surfaces, and human-to-human contact. Ultraviolet Subtype C (UVC) light-emitting diodes (LEDs) can disrupt the norovirus transmission chain for water, food, and surfaces. Here, we illuminate considerations to be adhered to when picking norovirus surrogates for disinfection studies and shine light on effective use of UVC for norovirus infection control in water and air and validation for such systems and explore the blind spot of radiation safety considerations when using UVC disinfection strategies. This perspective also discusses the promise of UVC for norovirus mitigation to save and ease life.

4.
Access Microbiol ; 3(9): 000194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712901

RESUMO

Hospital-associated infections (HAIs) are a major burden in healthcare systems. In this study, UVC LEDs emitting radiation from 260 to 270 nm were evaluated for effectiveness in reducing methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium and Acinetobacter baumannii . The array has four WD LEDs, each with 70 mW placed at 7 cm from test organisms. With 11.76 mJ cm-2, the study obtained 99.99% reduction (log10 reduction factor of 4) against MRSA and VRE. For A. baumannii , 9 mJ cm-2 obtained 99.999% reduction (log10 reduction factor of 5). These results present scientific evidence on how effective UVC LEDs can be used in the fight against HAIs.

5.
Front Microbiol ; 12: 719578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539611

RESUMO

The purgaty One systems (cap+bottle) are portable stainless-steel water bottles with UV subtype C (UVC) disinfection capability. This study examines the bottle design, verifies disinfection performance against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, and heterotrophic contaminants, and addresses the public health relevance of heterotrophic bacteria. Bottles were inoculated with deliberately contaminated potable water and disinfection efficacy examined using colony forming unit (CFU) assay for each bacterial strain. The heterotrophic plate count (HPC) method was used to determine the disinfection performance against environmental contaminants at day 0 and after 3days of water in stationary condition without prior UVC exposure. All UVC irradiation experiments were performed under stationary conditions to confirm that the preset application cycle of 55s offers the desired disinfection performance under-tested conditions. To determine effectiveness of purgaty One systems (cap+bottle) in disinfection, inactivation efficacy or log reduction value (LRV) was determined using bacteria concentration between UVC ON condition and controls (UVC OFF). The study utilized the 16S ribosomal RNA (rRNA) gene for characterization of isolates by identifying HPC bacteria to confirm if they belong to groups that are of public health concern. Purgaty One systems fitted with Klaran UVC LEDs achieved 99.99% inactivation (LRV4) efficacy against E. coli and 99.9% inactivation (LRV3) against P. aeruginosa, V. cholerae, and heterotrophic contaminants. Based on the 16S rRNA gene analyses, the study determined that the identified HPC isolates from UVC irradiated water are of rare public health concern. The bottles satisfactorily inactivated the target pathogenic bacteria and HPC contaminants even after 3days of water in stationary condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA