Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Open Biol ; 14(5): 230430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38806146

RESUMO

Both leaves and petals are covered in a cuticle, which itself contains and is covered by cuticular waxes. The waxes perform various roles in plants' lives, and the cuticular composition of leaves has received much attention. To date, the cuticular composition of petals has been largely ignored. Being the outermost boundary between the plant and the environment, the cuticle is the first point of contact between a flower and a pollinator, yet we know little about how plant-pollinator interactions shape its chemical composition. Here, we investigate the general structure and composition of floral cuticular waxes by analysing the cuticular composition of leaves and petals of 49 plant species, representing 19 orders and 27 families. We show that the flowers of plants from across the phylogenetic range are nearly devoid of wax crystals and that the total wax load of leaves in 90% of the species is higher than that of petals. The proportion of alkanes is higher, and the chain lengths of the aliphatic compounds are shorter in petals than in leaves. We argue these differences are a result of adaptation to the different roles leaves and petals play in plant biology.


Assuntos
Flores , Folhas de Planta , Ceras , Folhas de Planta/química , Folhas de Planta/metabolismo , Ceras/química , Ceras/metabolismo , Flores/química , Flores/metabolismo , Filogenia , Epiderme Vegetal/química , Epiderme Vegetal/metabolismo , Plantas/química , Plantas/metabolismo , Especificidade da Espécie
2.
Curr Opin Insect Sci ; 59: 101086, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468044

RESUMO

Flowers present information to their insect visitors in multiple simultaneous sensory modalities. Research has commonly focussed on information presented in visual and olfactory modalities. Recently, focus has shifted towards additional 'invisible' information, and whether information presented in multiple modalities enhances the interaction between flowers and their visitors. In this review, we highlight work that addresses how multimodality influences behaviour, focussing on work conducted on bumblebees (Bombus spp.), which are often used due to both their learning abilities and their ability to use multiple sensory modes to identify and differentiate between flowers. We review the evidence for bumblebees being able to use humidity, electrical potential, surface texture and temperature as additional modalities, and consider how multimodality enhances their performance. We consider mechanisms, including the cross-modal transfer of learning that occurs when bees are able to transfer patterns learnt in one modality to an additional modality without additional learning.


Assuntos
Flores , Aprendizagem , Abelhas , Animais , Temperatura
3.
PLoS Comput Biol ; 19(3): e1010908, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862622

RESUMO

The movement of groups can be heavily influenced by 'leader' individuals who differ from the others in some way. A major source of differences between individuals is the repeatability and consistency of their behaviour, commonly considered as their 'personality', which can influence both position within a group as well as the tendency to lead. However, links between personality and behaviour may also depend upon the immediate social environment of the individual; individuals who behave consistently in one way when alone may not express the same behaviour socially, when they may be conforming with the behaviour of others. Experimental evidence shows that personality differences can be eroded in social situations, but there is currently a lack of theory to identify the conditions where we would expect personality to be suppressed. Here, we develop a simple individual-based framework considering a small group of individuals with differing tendencies to perform risky behaviours when travelling away from a safe home site towards a foraging site, and compare the group behaviours when the individuals follow differing rules for aggregation behaviour determining how much attention they pay to the actions of their fellow group-members. We find that if individuals pay attention to the other members of the group, the group will tend to remain at the safe site for longer, but then travel faster towards the foraging site. This demonstrates that simple social behaviours can result in the repression of consistent inter-individual differences in behaviour, giving the first theoretical consideration of the social mechanisms behind personality suppression.


Assuntos
Comportamento Social , Viagem , Humanos , Personalidade , Processos Grupais
4.
Ecol Evol ; 13(3): e9908, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36937074

RESUMO

Most animals need to spend time being vigilant for predators, at the expense of other activities such as foraging. Group-living animals can benefit from the shared vigilance effort of other group members, with individuals reducing personal vigilance effort as group size increases. Behaviors like active scanning or head lifting are usually used to quantify vigilance but may not be accurate measures of this. We suggest that measuring an animal's blinking rate gives a meaningful measure of vigilance: increased blinking implies reduced vigilance, as the animal cannot detect predators when its eyes are closed. We describe an observational study of a captive population of red deer, where we measured the blinking rates of individual deer from groups of differing sizes (where mean group size ranged between 1 and 42.7 individuals). We demonstrate that as group size increases in red deer, individuals increase their blink rate, confirming the prediction that vigilance should decrease. Blinking is a simple non-invasive measure and offers a useful metric for assessing the welfare of animals experiencing an increase in perceived predation risk or other stressors.

5.
Environ Entomol ; 51(5): 1010-1019, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35899458

RESUMO

Flowers produce local humidity that is often greater than that of the surrounding environment, and studies have shown that insect pollinators may be able to use this humidity difference to locate and identify suitable flowers. However, environmental humidity is highly heterogeneous, and is likely to affect the detectability of floral humidity, potentially constraining the contexts in which it can be used as a salient communication pathway between plants and their pollinators. In this study, we use differential conditioning techniques on bumblebees Bombus terrestris audax (Harris) to explore the detectability of an elevated floral humidity signal when presented against different levels of environmental noise. Artificial flowers were constructed that could be either dry or humid, and individual bumblebees were presented with consistent rewards in either the humid or dry flowers presented in an environment with four levels of constant humidity, ranging from low (~20% RH) to highly saturated (~95% RH). Ability to learn was dependent upon both the rewarding flower type and the environment: the bumblebees were able to learn rewarding dry flowers in all environments, but their ability to learn humid rewarding flowers was dependent on the environmental humidity, and they were unable to learn humid rewarding flowers when the environment was highly saturated. This suggests that floral humidity might be masked from bumblebees in humid environments, suggesting that it may be a more useful signal to insect pollinators in arid environments.


Assuntos
Himenópteros , Abelhas , Animais , Umidade , Flores , Aprendizagem , Polinização
6.
Planta ; 255(4): 78, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246754

RESUMO

MAIN CONCLUSION: Using petrolatum gel as an antitranspirant on the flowers of California poppy and giant bindweed, we show that transpiration provides a large contribution to floral humidity generation. Floral humidity, an area of elevated humidity in the headspace of flowers, is believed to be produced predominantly through a combination of evaporation of liquid nectar and transpirational water loss from the flower. However, the role of transpiration in floral humidity generation has not been directly tested and is largely inferred by continued humidity production when nectar is removed from flowers. We test whether transpiration contributes to the floral humidity generation of two species previously identified to produce elevated floral humidity, Calystegia silvatica and Eschscholzia californica. Floral humidity production of flowers that underwent an antitranspirant treatment, petrolatum gel which blocks transpiration from treated tissues, is compared to flowers that did not receive such treatments. Gel treatments reduced floral humidity production to approximately a third of that produced by untreated flowers in C. silvatica, and half of that in E. californica. This confirms the previously untested inferences that transpiration has a large contribution to floral humidity generation and that this contribution may vary between species.


Assuntos
Flores , Néctar de Plantas , Transporte Biológico , Umidade , Polinização
7.
Ecol Evol ; 11(21): 14585-14597, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765127

RESUMO

Bespoke (custom-built) Raspberry Pi cameras are increasingly popular research tools in the fields of behavioral ecology and conservation, because of their comparative flexibility in programmable settings, ability to be paired with other sensors, and because they are typically cheaper than commercially built models.Here, we describe a novel, Raspberry Pi-based camera system that is fully portable and yet weatherproof-especially to humidity and salt spray. The camera was paired with a passive infrared sensor, to create a movement-triggered camera capable of recording videos over a 24-hr period. We describe an example deployment involving "retro-fitting" these cameras into artificial nest boxes on Praia Islet, Azores archipelago, Portugal, to monitor the behaviors and interspecific interactions of two sympatric species of storm-petrel (Monteiro's storm-petrel Hydrobates monteiroi and Madeiran storm-petrel Hydrobates castro) during their respective breeding seasons.Of the 138 deployments, 70% of all deployments were deemed to be "Successful" (Successful was defined as continuous footage being recorded for more than one hour without an interruption), which equated to 87% of the individual 30-s videos. The bespoke cameras proved to be easily portable between 54 different nests and reasonably weatherproof (~14% of deployments classed as "Partial" or "Failure" deployments were specifically due to the weather/humidity), and we make further trouble-shooting suggestions to mitigate additional weather-related failures.Here, we have shown that this system is fully portable and capable of coping with salt spray and humidity, and consequently, the camera-build methods and scripts could be applied easily to many different species that also utilize cavities, burrows, and artificial nests, and can potentially be adapted for other wildlife monitoring situations to provide novel insights into species-specific daily cycles of behaviors and interspecies interactions.

9.
STAR Protoc ; 2(2): 100598, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34169292

RESUMO

Bumblebees are a key pollinator. Understanding the factors that influence the timing of sleep and foraging trips is important for efficient foraging and pollination. Here, we illustrate how individual locomotor activity monitoring and colony-wide radio frequency identification tracking can be combined to analyze the effects of agrochemicals like neonicotinoids on locomotor and foraging rhythmicity and sleep quantity/quality in bumblebees. We also highlight aspects of the design that can be adapted for other invertebrates or agrochemicals, allowing broader application of these techniques. For complete details on the use and execution of this protocol, please refer to Tasman et al. (2020).


Assuntos
Abelhas/fisiologia , Comportamento Alimentar , Locomoção , Atividade Motora , Ondas de Rádio , Sono , Animais , Inseticidas
10.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34161560

RESUMO

Floral humidity, a region of elevated humidity in the headspace of the flower, occurs in many plant species and may add to their multimodal floral displays. So far, the ability to detect and respond to floral humidity cues has been only established for hawkmoths when they locate and extract nectar while hovering in front of some moth-pollinated flowers. To test whether floral humidity can be used by other more widespread generalist pollinators, we designed artificial flowers that presented biologically relevant levels of humidity similar to those shown by flowering plants. Bumblebees showed a spontaneous preference for flowers that produced higher floral humidity. Furthermore, learning experiments showed that bumblebees are able to use differences in floral humidity to distinguish between rewarding and non-rewarding flowers. Our results indicate that bumblebees are sensitive to different levels of floral humidity. In this way floral humidity can add to the information provided by flowers and could impact pollinator behaviour more significantly than previously thought.


Assuntos
Mariposas , Polinização , Animais , Abelhas , Flores , Umidade , Néctar de Plantas
11.
BMC Ecol Evol ; 21(1): 79, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957862

RESUMO

BACKGROUND: Animals living in social groups can benefit from conducting the same behaviour as other group members. If this synchronisation is achieved by copying the behaviour of other individuals, we would expect synchrony to be more likely when pairs of individuals are close together. RESULTS: By comparing the behaviour of a focal individual with its nearest, second nearest and third nearest neighbour and a control individual, we show that pairings of fallow deer Dama dama are more likely to be active or inactive at the same moment in time if they are closer together. We also demonstrate that synchronisation in the group happens more often than would be expected by chance. CONCLUSIONS: Our findings suggest that there is a relationship between the synchronisation of behaviour and the spatial proximity of individuals. Spatial proximity is likely to be an important influence on how likely individuals are to be synchronised, although care needs to be taken to separate social and environmental influences on individual behaviour.


Assuntos
Cervos , Animais
12.
Front Physiol ; 12: 659440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967830

RESUMO

Neonicotinoids are the most widely used insecticides in the world and are implicated in the widespread population declines of insects including pollinators. Neonicotinoids target nicotinic acetylcholine receptors which are expressed throughout the insect central nervous system, causing a wide range of sub-lethal effects on non-target insects. Here, we review the potential of the fruit fly Drosophila melanogaster to model the sub-lethal effects of neonicotinoids on pollinators, by utilizing its well-established assays that allow rapid identification and mechanistic characterization of these effects. We compare studies on the effects of neonicotinoids on lethality, reproduction, locomotion, immunity, learning, circadian rhythms and sleep in D. melanogaster and a range of pollinators. We also highlight how the genetic tools available in D. melanogaster, such as GAL4/UAS targeted transgene expression system combined with RNAi lines to any gene in the genome including the different nicotinic acetylcholine receptor subunit genes, are set to elucidate the mechanisms that underlie the sub-lethal effects of these common pesticides. We argue that studying pollinators and D. melanogaster in tandem allows rapid elucidation of mechanisms of action, which translate well from D. melanogaster to pollinators. We focus on the recent identification of novel and important sublethal effects of neonicotinoids on circadian rhythms and sleep. The comparison of effects between D. melanogaster and pollinators and the use of genetic tools to identify mechanisms make a powerful partnership for the future discovery and testing of more specific insecticides.

13.
PeerJ ; 9: e10950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643718

RESUMO

Eye blinking is an essential maintenance behaviour for many terrestrial animals, but is also a risky behaviour as the animal is unable to scan the environment and detect hazards while its eyes are temporarily closed. It is therefore likely that the length of time that the eyes are closed and the length of the gap between blinks for a species may reflect aspects of the ecology of that species, such as its social or physical environment. An earlier published study conducted a comparative study linking blinking behaviour and ecology, and detailed a dataset describing the blinking behaviour of a large number of primate species that was collected from captive animals, but the analysis presented did not control for the nonindependence of the data due to common evolutionary history. In the present study, the dataset is reanalysed using phylogenetic comparative methods, after reconsideration of the parameters describing the physical and social environments of the species. I find that blink rate is best described by the locomotion mode of a species, where species moving through arboreal environments blink least, ground-living species blink most, and species that use both environments show intermediate rates. The duration of a blink was also related to locomotion mode, and positively correlated with both mean species group size and mean species body mass, although the increase in relation to group size is small. How a species moves through the environment therefore appears to be important for determining blinking behaviour, and suggests that complex arboreal environments may require less interruption to visual attention. Given that the data were collected with captive individuals, caution is recommended for interpreting the correlations found.

14.
Plant Methods ; 17(1): 23, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632239

RESUMO

BACKGROUND: Floral temperature has important consequences for plant biology, and accurate temperature measurements are therefore important to plant research. Thermography, also referred to as thermal imaging, is beginning to be used more frequently to measure and visualize floral temperature. Accurate thermographic measurements require information about the object's emissivity (its capacity to emit thermal radiation with temperature), to obtain accurate temperature readings. However, there are currently no published estimates of floral emissivity available. This is most likely to be due to flowers being unsuitable for the most common protocols for emissivity estimation. Instead, researchers have used emissivity estimates collected on vegetative plant tissue when conducting floral thermography, assuming these tissues to have the same emissivity. As floral tissue differs from vegetative tissue, it is unclear how appropriate and accurate these vegetative tissue emissivity estimates are when they are applied to floral tissue. RESULTS: We collect floral emissivity estimates using two protocols, using a thermocouple and a water bath, providing a guide for making estimates of floral emissivity that can be carried out without needing specialist equipment (apart from the thermal camera). Both protocols involve measuring the thermal infrared radiation from flowers of a known temperature, providing the required information for emissivity estimation. Floral temperature is known within these protocols using either a thermocouple, or by heating the flowers within a water bath. Emissivity estimates indicate floral emissivity is high, near 1, at least across petals. While the two protocols generally indicated the same trends, the water bath protocol gave more realistic and less variable estimates. While some variation with flower species and location on the flower is observed in emissivity estimates, these are generally small or can be explained as resulting from artefacts of these protocols, relating to thermocouple or water surface contact quality. CONCLUSIONS: Floral emissivity appears to be high, and seems quite consistent across most flowers and between species, at least across petals. A value near 1, for example 0.98, is recommended for accurate thermographic measurements of floral temperature. This suggests that the similarly high values based on vegetation emissivity estimates used by previous researchers were appropriate.

15.
BMC Res Notes ; 14(1): 39, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509265

RESUMO

OBJECTIVES: Floral structures may be warmer than their environment, and can show thermal patterning, where individual floral structures show different temperatures across their surface. Pollinators can differentiate between artificial flowers that mimic both naturally warmed and thermally patterned ones, but it has yet to be demonstrated that these patterns are biologically meaningful. To explore the relationship between pollinators and temperature patterning, we need to know whether there is diversity in patterning, and that these patterns are not simply a by-product of floral architecture constrained by ancestry. We analysed a dataset of 97 species to explore whether intrafloral temperature differences were correlated within clades (phylogenetic signal), or whether the variation seen was diverse enough to suggest that floral temperature patterns are influenced by the abiotic or pollinator-related niches to which plant species are adapted. RESULTS: Some phylogenetic signal was observed, with both the Asteraceae and species of Pelargonium being more similar than expected by chance, but with other species surveyed not showing signal. The Asteraceae tend to have large temperature differences across the floral surface, which may be due to floral architecture constraints within the family. Other families show no correlation, suggesting that patterning is influenced by pollinators and the environment.


Assuntos
Asteraceae , Polinização , Flores , Humanos , Filogenia , Temperatura
16.
Sci Rep ; 11(1): 2061, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479461

RESUMO

Globally, neonicotinoids are the most used insecticides, despite their well-documented sub-lethal effects on beneficial insects. Neonicotinoids are nicotinic acetylcholine receptor agonists. Memory, circadian rhythmicity and sleep are essential for efficient foraging and pollination and require nicotinic acetylcholine receptor signalling. The effect of field-relevant concentrations of the European Union-banned neonicotinoids: imidacloprid, clothianidin, thiamethoxam and thiacloprid were tested on Drosophila memory, circadian rhythms and sleep. Field-relevant concentrations of imidacloprid, clothianidin and thiamethoxam disrupted learning, behavioural rhythmicity and sleep whilst thiacloprid exposure only affected sleep. Exposure to imidacloprid and clothianidin prevented the day/night remodelling and accumulation of pigment dispersing factor (PDF) neuropeptide in the dorsal terminals of clock neurons. Knockdown of the neonicotinoid susceptible Dα1 and Dß2 nicotinic acetylcholine receptor subunits in the mushroom bodies or clock neurons recapitulated the neonicotinoid like deficits in memory or sleep/circadian behaviour respectively. Disruption of learning, circadian rhythmicity and sleep are likely to have far-reaching detrimental effects on beneficial insects in the field.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptores Nicotínicos/genética , Sono/efeitos dos fármacos , Animais , Ritmo Circadiano/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Guanidinas/farmacologia , Inseticidas/efeitos adversos , Inseticidas/farmacologia , Memória/fisiologia , Neonicotinoides/efeitos adversos , Neonicotinoides/farmacologia , Neuropeptídeos/genética , Agonistas Nicotínicos/farmacologia , Nitrocompostos/farmacologia , Sono/genética , Tiametoxam/farmacologia , Tiazinas/farmacologia , Tiazóis/farmacologia
17.
iScience ; 23(12): 101827, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33305183

RESUMO

Neonicotinoids have been implicated in the large declines observed in insects such as bumblebees, an important group of pollinators. Neonicotinoids are agonists of nicotinic acetylcholine receptors that are found throughout the insect central nervous system and are the main mediators of synaptic neurotransmission. These receptors are important for the function of the insect central clock and circadian rhythms. The clock allows pollinators to coincide their activity with the availability of floral resources and favorable flight temperatures, as well as impact learning, navigation, and communication. Here we show that exposure to the field-relevant concentration of 10 µg/L imidacloprid caused a reduction in bumblebee foraging activity, locomotion, and foraging rhythmicity. Foragers showed an increase in daytime sleep and an increase in the proportion of activity occurring at night. This could reduce foraging and pollination opportunities, reducing the ability of the colony to grow and reproduce, endangering bee populations and crop yields.

18.
PeerJ ; 8: e10305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240636

RESUMO

Individual animals experience different costs and benefits associated with group living, which may impact on their foraging efficiency in ways not yet well specified. This study investigated associations between social dominance, body condition and interruptions to foraging behaviour in a cross-sectional study of 116 domestic horses and ponies, kept in 20 discrete herds. Social dominance was measured for each individual alongside observations of winter foraging behaviour. During bouts of foraging, the duration, frequency and category (vigilance, movement, social displacements given and received, scratching and startle responses) of interruptions were recorded, with total interruption time taken as a proxy measure of foraging efficiency. Total foraging time was not influenced by body condition or social dominance. Body condition was associated with social dominance, but more strongly associated with foraging efficiency. Specifically, lower body condition was associated with greater vigilance. This demonstrates that factors other than social dominance can result in stable differences in winter body condition.

19.
Arthropod Plant Interact ; 14(2): 193-206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32215113

RESUMO

Floral guides are signal patterns that lead pollinators to floral rewards after they have located the flower, and increase foraging efficiency and pollen transfer. Patterns of several floral signalling modalities, particularly colour patterns, have been identified as being able to function as floral guides. Floral temperature frequently shows patterns that can be used by bumblebees for locating and recognising the flower, but whether these temperature patterns can function as a floral guide has not been explored. Furthermore, how combined patterns (using multiple signalling modalities) affect floral guide function has only been investigated in a few modality combinations. We assessed how artificial flowers induce behaviours in bumblebees when rewards are indicated by unimodal temperature patterns, unimodal colour patterns or multimodal combinations of these. Bees visiting flowers with unimodal temperature patterns showed an increased probability of finding rewards and increased learning of reward location, compared to bees visiting flowers without patterns. However, flowers with contrasting unimodal colour patterns showed further guide-related behavioural changes in addition to these, such as reduced reward search times and attraction to the rewarding feeder without learning. This shows that temperature patterns alone can function as a floral guide, but with reduced efficiency. When temperature patterns were added to colour patterns, bees showed similar improvements in learning reward location and reducing their number of failed visits in addition to the responses seen to colour patterns. This demonstrates that temperature pattern guides can have beneficial effects on flower handling both when alone or alongside colour patterns.

20.
Front Plant Sci ; 11: 249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211004

RESUMO

The area of space immediately around the floral display is likely to have an increased level of humidity relative to the environment around it, due to both nectar evaporation and floral transpiration. This increased level of floral humidity could act as a close-distance cue for pollinators or influence thermoregulation, pollen viability and infection of flowers by fungal pathogens. However, with a few exceptions, not much is known about the patterns of floral humidity in flowering plants or the physiological traits that result in its generation. We conducted a survey of 42 radially symmetrical flower species (representing 21 widely spread families) under controlled conditions. Humidity was measured using a novel robot arm technique that allowed us to take measurements along transects across and above the floral surface. The intensity of floral humidity was found to vary between different flower species. Thirty of the species we surveyed presented levels of humidity exceeding a control comparable to background humidity levels, while twelve species did not. Patterns of floral humidity also differed across species. Nevertheless, floral humidity tended to be highest near the center of the flower, and decreased logarithmically with increasing distance above the flower, normally declining to background levels within 30 mm. It remains unclear how physiological traits influence the diversity of floral humidity discovered in this survey, but floral shape seems to also influence floral humidity. These results demonstrate that floral humidity may occur in a wide range of species and that there might be greater level of diversity and complexity in this floral trait than previously known.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...