Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Chem Lett ; 21(1): 339-362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36060494

RESUMO

Global pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis.  The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photocatalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanims, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/solvothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2.

2.
J Hazard Mater ; 438: 129514, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816799

RESUMO

We report the synthesis of H2SO4-modified biochars (SBCs) as solid-acid catalysts to activate H2O2 at circumneutral pH under visible light radiation. Spent coffee grinds were pyrolyzed with TiO2 at 300, 500 and 600 °C followed by steeping in 5 M H2SO4 and were used for the Fenton-like degradation of methyl orange (MO). The catalytic activity of SBC depended on the pyrolysis temperature and correlated well with the surface acidity and persistent free radical (PFR) concentration. Results showed that a complete MO removal and a TOC reduction of 70.2% can be achieved with SBC500 under photo-Fenton conditions. However, poisoning of the Lewis acid sites on SBC by PO43- led to a dramatic decrease in the removal of MO with inhibition effects more pronounced than with radical scavengers, suggesting the key role played by acid-sites on the activation of H2O2. Finally, electron paramagnetic resonance (EPR) studies identified •OH as the key transient in the degradation followed by •O2- and 1O2. These findings suggest that H2O2 was likely adsorbed on the surface oxygenated functional groups before being decomposed by accepting electrons from the PFRs on the SBC surface.


Assuntos
Peróxido de Hidrogênio , Ácidos de Lewis , Carvão Vegetal , Radicais Livres , Luz , Peróxidos
3.
J Environ Manage ; 270: 110906, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721341

RESUMO

The evolution of modern technology and industrial processes has been accompanied by an increase in the utilization of chemicals to derive new products. Water bodies are frequently contaminated by the presence of conventional pollutants such as dyes and heavy metals, as well as microorganisms that are responsible for various diseases. A sharp rise has also been observed in the presence of new compounds heretofore excluded from the design and evaluation of wastewater treatment processes, categorized as "emerging pollutants". While some are harmless, certain emerging pollutants possess the ability to cause debilitating effects on a wide spectrum of living organisms. Photocatalytic degradation has emerged as an increasingly popular solution to the problem of water pollution due to its effectiveness and versatility. The primary objective of this study is to thoroughly scrutinize recent applications of titanium dioxide and its modified forms as photocatalytic materials in the removal and control of several classes of water pollutants as reported in literature. Different structural modifications are used to enhance the performance of the photocatalyst such as doping and formation of composites. The principles of these modifications have been scrutinized and evaluated in this review in order to present their advantages and drawbacks. The mechanisms involved in the removal of different pollutants through photocatalysis performed by TiO2 have been highlighted. The factors affecting the mechanism of photocatalysis and those affecting the performance of different TiO2-based photocatalysts have also been thoroughly discussed, thereby presenting a comprehensive view of all aspects involved in the application of TiO2 to remediate and control water pollution.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água/análise , Catálise , Titânio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...