Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Med Image Anal ; 90: 102957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716199

RESUMO

Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to the quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and extensive clinical efforts for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Both quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage (https://atm22.grand-challenge.org/).


Assuntos
Pneumopatias , Árvores , Humanos , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Pulmão/diagnóstico por imagem
3.
Eur Radiol ; 33(11): 8228-8238, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37505249

RESUMO

OBJECTIVES: The study examined whether quantified airway metrics associate with mortality in idiopathic pulmonary fibrosis (IPF). METHODS: In an observational cohort study (n = 90) of IPF patients from Ege University Hospital, an airway analysis tool AirQuant calculated median airway intersegmental tapering and segmental tortuosity across the 2nd to 6th airway generations. Intersegmental tapering measures the difference in median diameter between adjacent airway segments. Tortuosity evaluates the ratio of measured segmental length against direct end-to-end segmental length. Univariable linear regression analyses examined relationships between AirQuant variables, clinical variables, and lung function tests. Univariable and multivariable Cox proportional hazards models estimated mortality risk with the latter adjusted for patient age, gender, smoking status, antifibrotic use, CT usual interstitial pneumonia (UIP) pattern, and either forced vital capacity (FVC) or diffusion capacity of carbon monoxide (DLco) if obtained within 3 months of the CT. RESULTS: No significant collinearity existed between AirQuant variables and clinical or functional variables. On univariable Cox analyses, male gender, smoking history, no antifibrotic use, reduced DLco, reduced intersegmental tapering, and increased segmental tortuosity associated with increased risk of death. On multivariable Cox analyses (adjusted using FVC), intersegmental tapering (hazard ratio (HR) = 0.75, 95% CI = 0.66-0.85, p < 0.001) and segmental tortuosity (HR = 1.74, 95% CI = 1.22-2.47, p = 0.002) independently associated with mortality. Results were maintained with adjustment using DLco. CONCLUSIONS: AirQuant generated measures of intersegmental tapering and segmental tortuosity independently associate with mortality in IPF patients. Abnormalities in proximal airway generations, which are not typically considered to be abnormal in IPF, have prognostic value. CLINICAL RELEVANCE STATEMENT: Quantitative measurements of intersegmental tapering and segmental tortuosity, in proximal (second to sixth) generation airway segments, independently associate with mortality in IPF. Automated airway analysis can estimate disease severity, which in IPF is not restricted to the distal airway tree. KEY POINTS: • AirQuant generates measures of intersegmental tapering and segmental tortuosity. • Automated airway quantification associates with mortality in IPF independent of established measures of disease severity. • Automated airway analysis could be used to refine patient selection for therapeutic trials in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Tomografia Computadorizada por Raios X , Masculino , Humanos , Lactente , Tomografia Computadorizada por Raios X/métodos , Capacidade Vital , Estudos de Coortes , Prognóstico , Pulmão/diagnóstico por imagem
4.
Sci Rep ; 13(1): 9986, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339958

RESUMO

The COVID-19 pandemic has been a great challenge to healthcare systems worldwide. It highlighted the need for robust predictive models which can be readily deployed to uncover heterogeneities in disease course, aid decision-making and prioritise treatment. We adapted an unsupervised data-driven model-SuStaIn, to be utilised for short-term infectious disease like COVID-19, based on 11 commonly recorded clinical measures. We used 1344 patients from the National COVID-19 Chest Imaging Database (NCCID), hospitalised for RT-PCR confirmed COVID-19 disease, splitting them equally into a training and an independent validation cohort. We discovered three COVID-19 subtypes (General Haemodynamic, Renal and Immunological) and introduced disease severity stages, both of which were predictive of distinct risks of in-hospital mortality or escalation of treatment, when analysed using Cox Proportional Hazards models. A low-risk Normal-appearing subtype was also discovered. The model and our full pipeline are available online and can be adapted for future outbreaks of COVID-19 or other infectious disease.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Hospitais , Previsões
5.
Respir Med ; 191: 106710, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920372

RESUMO

BACKGROUND: Small Airways Disease (SAD) is a recognised part of the pathology in Chronic Obstructive Pulmonary Disease (COPD) and contributes to the symptom burden in the disease. Upper airway symptoms in COPD is an emerging field of study, and in this study, we sought to examine the co-existence of SAD and upper airways symptoms in a cohort of COPD patients METHODS: We investigated a cohort of patients with COPD for the presence of SAD with three different modalities. We performed High-Resolution CT (HRCT) with Parametric Response Mapping (PRM) analysis and recorded distribution of emphysema (PRMEmph) and functional Small Airways Disease (PRMfSAD). We measured central and peripheral lung resistance using Impulse Oscillometry (IOS) and recorded R5Hz, R20Hz, R5-R20Hz, X5, Fres and Ax. Static lung function parameters were obtained using Body Plethysmography. Data on upper and lower airway symptoms were evaluated using the Upper Airway subdomain of the 22 items Sino Nasal Outcome Test (SNOT22nasal) and the COPD Assessment Test (CAT), respectively. FINDINGS: We recruited a total of 112 patients. (female sex: 58%, Age 68 (±8) years, FEV1%predicted: 53% (±16%), GOLD stage: A: 23%, B: 55%, C:1% D: 21%). Forty-five (40%) were classified as having high upper airway symptoms (UAS), defined as SNOT22nasal ≥6. Eighty-seven per cent showed signs of SAD using IOS (R5-R20Hz > 0.07 kPa/L/s). No significant differences were found between UAS groups in IOS, PRM or Body Plethysmography parameters. CONCLUSION: In patients with COPD, the prevalence of small airways disease was very high, but no association between upper airway symptoms and small airways disease was demonstrated.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Oscilometria , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Enfisema Pulmonar/complicações , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/epidemiologia , Testes de Função Respiratória
6.
Int J Chron Obstruct Pulmon Dis ; 15: 1751-1787, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801677

RESUMO

Exacerbations of chronic obstructive pulmonary disease (COPD) are currently diagnosed based on changes in respiratory symptoms. Characterizing the imaging manifestation of exacerbations could be useful for objective diagnosis of exacerbations in the clinic and clinical trials, as well as provide a mechanism for monitoring exacerbation treatment and recovery. In this systematic review, we employed a comprehensive search across three databases (Medline, EMBASE, Web of Science) to identify studies that performed imaging of the thorax at COPD exacerbation. We included 51 from a total of 5,047 articles which met all our inclusion criteria. We used an adapted version of the Modified Newcastle-Ottawa Quality Assessment Scale for cohort studies to assess the quality of the included studies. Conclusions were weighted towards higher-quality articles. We identified a total of 36 thoracic imaging features studied at exacerbation of COPD. Studies were generally heterogeneous in their measurements and focus. Nevertheless, considering studies which performed consecutive imaging at stable state and exacerbation, which scored highest for quality, we identified salient imaging biomarkers of exacerbations. An exacerbation is characterized by airway wall and airway calibre changes, hyperinflation, pulmonary vasoconstriction and imaging features suggestive of pulmonary arterial hypertension. Most information was gained from CT studies. We present the first ever composite imaging signature of COPD exacerbations. While imaging during an exacerbation is comparatively new and not comprehensively studied, it may uncover important insights into the acute pathophysiologic changes in the cardiorespiratory system during exacerbations of COPD, providing objective confirmation of events and a biomarker of recovery and treatment response.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Progressão da Doença , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem
7.
Am J Respir Crit Care Med ; 201(3): 294-302, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31657634

RESUMO

Rationale: The decades-long progression of chronic obstructive pulmonary disease (COPD) renders identifying different trajectories of disease progression challenging.Objectives: To identify subtypes of patients with COPD with distinct longitudinal progression patterns using a novel machine-learning tool called "Subtype and Stage Inference" (SuStaIn) and to evaluate the utility of SuStaIn for patient stratification in COPD.Methods: We applied SuStaIn to cross-sectional computed tomography imaging markers in 3,698 Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-4 patients and 3,479 controls from the COPDGene (COPD Genetic Epidemiology) study to identify subtypes of patients with COPD. We confirmed the identified subtypes and progression patterns using ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) data. We assessed the utility of SuStaIn for patient stratification by comparing SuStaIn subtypes and stages at baseline with longitudinal follow-up data.Measurements and Main Results: We identified two trajectories of disease progression in COPD: a "Tissue→Airway" subtype (n = 2,354, 70.4%), in which small airway dysfunction and emphysema precede large airway wall abnormalities, and an "Airway→Tissue" subtype (n = 988, 29.6%), in which large airway wall abnormalities precede emphysema and small airway dysfunction. Subtypes were reproducible in ECLIPSE. Baseline stage in both subtypes correlated with future FEV1/FVC decline (r = -0.16 [P < 0.001] in the Tissue→Airway group; r = -0.14 [P = 0.011] in the Airway→Tissue group). SuStaIn placed 30% of smokers with normal lung function at elevated stages, suggesting imaging changes consistent with early COPD. Individuals with early changes were 2.5 times more likely to meet COPD diagnostic criteria at follow-up.Conclusions: We demonstrate two distinct patterns of disease progression in COPD using SuStaIn, likely representing different endotypes. One third of healthy smokers have detectable imaging changes, suggesting a new biomarker of "early COPD."


Assuntos
Progressão da Doença , Modelos Teóricos , Doença Pulmonar Obstrutiva Crônica/classificação , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...