Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Radiat Oncol ; 27: 164-168, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33681483

RESUMO

BACKGROUND: Deep-inspiration breath-hold (DIBH) reduces radiation dose to the heart in patients undergoing locoregional breast radiotherapy. In the context of tangential irradiation of the breast/ chest wall, a voluntary breath hold (vDIBH) technique has been shown to be as reproducible as a machine-assisted breath hold technique using the active breathing co-ordinator (ABC™, Elekta, Crawley, UK, ABC_DIBH). This study compares set-up reproducibility for vDIBH versus ABC_DIBH in patients undergoing volumetric-modulated arc radiotherapy (VMAT) for breast cancer, both with and without wax bolus. METHOD: Patients with breast cancer requiring pan regional lymph node VMAT +/- wax bolus in breath-hold were CT scanned in vDIBH and ABC_DIBH. Patients were randomised to receive one technique for fractions 1-7 and the other for fractions 8-15. Daily cone beam computed tomography (CBCT) was performed and registered to planning-CT using bony anatomy. Within-patient comparisons of mean daily chest wall position were made using a paired t-test. Population, systematic (∑) and random errors (α) were estimated. Intrafraction reproducibility was assessed by comparing chest wall position and diaphragm movement between consecutive breath holds on CBCT. RESULTS: 16 patients were recruited. All completed treatment with both techniques (9 patients with wax bolus, 7 patients without). CBCT derived ∑ were 2.1-6.4 mm (ABC_DIBH) and 2.1-4.9 mm (vDIBH), α were 1.7-2.6 mm (ABC_DIBH) and 2.2-2.7 mm (vDIBH) and mean daily chest wall displacements (MD) were 0.0-1.5 mm (ABC_DIBH) and -0.1-1.6 vDIBH (all p non-significant). Chest wall and diaphragm position was equivalent between consecutive breath holds in ABC and vDIBH (median difference 1.0 mm and 0.8 mm respectively, non p significant) demonstrating equivalent intrafraction reproducibility. CONCLUSION: This study demonstrates that a simple voluntary breath hold technique is feasible in combination with VMAT (+/- bolus) and is as reproducible as ABC_DIBH with VMAT for the irradiation of the breast and axillary and IMC lymph nodes in breast cancer patients.

2.
Clin Transl Radiat Oncol ; 16: 60-66, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31032432

RESUMO

AIMS: In patients undergoing locoregional radiotherapy (RT) for breast cancer including the internal mammary chain (IMC), VMAT has been shown to be superior to tangential-field radiotherapy in terms of target coverage and minimising dose to heart and lungs. In this study we describe and validate organ motion-based robust optimisation for generating breast and locoregional lymph node VMAT plans that are robust to inter-fractional changes. MATERIALS AND METHODS: In this retrospective study of five patients with left-sided breast cancer requiring locoregional breast radiotherapy including the IMC, non-robust plans were generated in the nominal scenario (planning-CT) and corresponding robust plans were created by optimising over a range of simulated CTs representing worst-case scenario shape changes to the breast. Both plans were re-calculated on CBCT images (n = 67) acquired prior to RT to generate estimates of delivered fractional dose. Plan robustness to inter-fractional changes was assessed in terms of the estimated target coverage and OAR dose. RESULTS: Organ motion-based robust optimisation was able to generate clinically acceptable treatment plans in the nominal scenario on the planning CT with no significant differences to OAR dose between the robust and non-robust planning techniques. All plans (robust and non-robust) achieved the mandatory target coverage requirements. Estimates of delivered dose demonstrated a significant improvement in breast target coverage for the robust plans compared to non-robust plans. For the breast CTV, 92% of the robust plans achieved the optimal D98% > 95% clinical goal as compared to 71% of the non-robust plans (p < 0.01). 94% of robust plans achieved acceptable superficial breast coverage, as compared to 55% for the non-robust technique. CONCLUSIONS: Organ motion-based robust optimisation VMAT is able to produce clinically acceptable organ-at-risk sparing plans for locoregional breast radiotherapy (including the IMC) that are robust to inter-fractional changes, therefore reducing the likelihood of reactive adaptive re-planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA