Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(12): 482, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999813

RESUMO

A poly(n-butyl acrylate)-gold-MXene quantum dots (PBA-Au-MXene QD) nanocomposite-based biosensor is presented that is modified by unique antisense single-stranded DNA (ssDNA) and uses the electrochemical detection methods of DPV, CV, and EIS to early detect miR-122 as a breast cancer biomarker in real clinical samples. This fabrication method is based on advanced nanotechnology, at which a poly(n-butyl acrylate) (PBA) as a non-conductive polymer transforms into a conductive composite by incorporating Au-MXene QD. This biosensor had a limit of detection (LOD) of 0.8 zM and a linear range from 0.001 aM to 1000 nM, making it capable of detecting the low concentrations of miR-122 in patient samples. Moreover, it allows approximately 100% sensitivity and 100% specificity for miR-122 without extraction. The synthesis and detection characteristics were evaluated by different complementary tests such as AFM, FTIR, TEM, and FESEM. This new biosensor can have a high potential in clinical applications to detect breast cancer early and hence improve patient outcomes.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Técnicas Biossensoriais/métodos
2.
Front Bioeng Biotechnol ; 11: 1097631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761295

RESUMO

Introduction: Cervical cancer is the leading cause of cancer-related death in women, so novel therapeutic approaches are needed to improve the effectiveness of current therapies or extend their activity. In recent decades, graphene analogs, such as Mxene, an emerging class of two-dimensional (2D) graphene analogs, have been drawing considerable attention based on their intrinsic physicochemical properties and performance as potential candidates for tumor therapy, particularly for therapeutic purposes. Here we explored the targeted drug delivery in cervical cancer in in vivo model. Mxene-based nanocarriers are not able to be precisely controlled in cancer treatment. Method: To solve this problem, the titanium carbide-magnetic core-shell nanocarrier (Ti3C2-Fe3O4@SiO2-FA) is also developed to provide synergetic anticancer with magnetic controlling ability along with pH-responsive drug release. A xenograft model of the cervix was used to investigate the effects of Cisplatin alone, or in combination with Ti3C2@FA and Ti3C2@ Fe3O4@SiO2-FA, on tumor growth following histological staining for evaluation of necrosis. Result and Discussion: A significant tumor-growth suppression effect is shown when the Ti3C2-Fe3O4@SiO2-FA nanocarrier is magnetically controlled Cisplatin drug release. It reveals a synergistic therapeutic efficacy used in conjunction with pharmaceuticals (p < .001). According to the in vivo study, the Ti3C2@FA@Cisplatin nanocomposite exhibits less tumor growth than the drug alone or Ti3C2@FA@Cisplatin via increasing necrosis effect (p < .001). Through this study, Mxene nanosheets are expanded for biomedical applications, not only through the fabrication of biocompatible magnetic Mxene nanocomposite but also through the development of functionalization strategies that enable the magnetic Ti3C2 nanocomposite to load high levels of Cisplatin for cervical cancer treatment (242.5%). Hence, Ti3C2-Fe3O4@SiO2-FA nanocarriers would be promising candidates to improve cancer treatment efficiency.

3.
Talanta ; 255: 124247, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603443

RESUMO

Cancer is one of the leading causes of death worldwide and a crisis for global health. Breast cancer is the second most common cancer globally. In the perusal, a novel electrochemical biosensor amplified with hierarchical flower-like gold, poly (n-butyl acrylate), and MXene (AuHFGNs/PnBA-MXene) nanocomposite and activated by highly special antisense ssDNA (single-stranded DNA) provide a promising alternative for miRNA-122 detection as a biomarker of breast cancer. The biosensor presented a detection limit of 0.0035 aM (S/N = 3) with a linear range from 0.01 aM to 10 nM. The platform was tried on 20 breast cancer miRNAs extracted from actual serum specimens (10 positives and 10 negatives). Founded on the quantitatively obtained outcomes and statistic analysis (t-test, box-graph, receiver performance characteristic curve, and cut-off amount), the biosensor showed a meaningful discrepancy between the native and positive groups with 100% specificity and 100% sensitivity. While, RT-qPCR showed less specificity and sensitivity (70% specificity, 100% sensitivity) than the proposed biosensor. To assess the quantitative capacity and biosensor detection limit for clinical tests, the biosensor diagnosis performance for continually diluted miRNA extracted from patients was compared to that gained by RT-qPCR results, indicating that the biosensor detection limit was lower than RT-qPCR. ssDNA/AuHFGN/PnBA-MXene/GCE displayed little cross-reaction with other sequences and also showed desirable stability, reproducibility, and specificity and stayed stable until 32 days. As a result, the designed biosensor can perform as a hopeful method for diagnosis applications.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , MicroRNAs , Nanocompostos , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Biomarcadores , DNA de Cadeia Simples/genética , Técnicas Biossensoriais/métodos , Ouro , Limite de Detecção
4.
Front Bioeng Biotechnol ; 10: 984336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091438

RESUMO

Breast cancer is the second most common cancer worldwide. Prognosis and timely treatment can reduce the illness or improve it. The use of nanomaterials leads to timely diagnosis and effective treatment. MXenes are a 2D material with a unique composition of attributes, containing significant electrical conductance, high optical characteristics, mechanical consistency, and excellent optical properties. Current advances and insights show that MXene is far more promising in biotechnology applications than current nanobiotechnology systems. MXenes have various applications in biotechnology and biomedicine, such as drug delivery/loading, biosensor, cancer treatment, and bioimaging programs due to their high surface area, excellent biocompatibility, and physicochemical properties. Surface modifications MXenes are not only biocompatible but also have multifunctional properties, such as aiming ligands for preferential agglomeration at the tumor sites for photothermal treatment. Studies have shown that these nanostructures, detection, and breast cancer therapy are more acceptable than present nanosystems in in vivo and in vitro. This review article aims to investigate the structure of MXene, its various synthesis methods, its application to cancer diagnosis, cytotoxicity, biodegradability, and cancer treatment by the photothermal process (in-vivo and in-vitro).

5.
Environ Res ; 204(Pt B): 111961, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34492277

RESUMO

In this study, the ionic liquid (Aliquat-336) and anionic surfactant (cetyltrimethylammonium bromide, CTAB) bi-functionalized chitosan beads were prepared and characterised using different techniques, including FTIR, XRD, SEM, EDS and BET surface area analysis. The characteristic analysis confirmed the successful conjugation of chitosan beads with both surfactant and ionic liquid. The novel fabricated beads (CS-CTAB-AL) were efficiently employed, as a high-performance adsorbent, for the removal of Tartrazine (TZ), an anionic food dye, from polluted water. The optimum adsorption of TZ onto the CS-CTAB-AL was found at 2 g L-1 of adsorbent in the wide pH range of 4-11, whereas just 45 min was required to reach more than 90% adsorption efficiency in the studied conditions. Also, the adsorption and kinetic studies showed that the experimental data well fitted the pseudo-first-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of prepared beads was found to be 45.95 mg g-1 at 45 °C. The adsorption properties of enabling CS-CTAB-AL conjugation introduced a new type of adsorbents, exploited the combination of ionic liquid and surfactant capabilities for wastewater treatment.


Assuntos
Quitosana , Líquidos Iônicos , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Tensoativos , Tartrazina , Poluentes Químicos da Água/análise
6.
Environ Res ; 204(Pt A): 111965, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34453900

RESUMO

In the present work, the surface of montmorillonite K10 was successfully modified by hexadecylamine surfactant (Mt-HDA) and its intercalation and characteristics were assessed by XRD, FTIR, SEM, EDX and BET methods. Also, its adsorption performance was systematically examined in the removal of Tartrazine (TZ), as a sulfonated azo dye model, from aqueous phase. Our results showed that the HDA modification remarkably improved the adsorption ability of montmorillonite toward TZ molecules. The highest adsorption efficiency was achieved >98% at the pH range of 4-6 within a fast process (less than 30 min). The maximum adsorption capacity Mt-HDA toward TZ molecules was found to be ~59 mg/g at 45 °C. The kinetic study indicated that the adsorption kinetic follows pseudo-second-order model, which shows the chemisorption process between Mt-HDA and TZ molecules. Besides, the adsorption isotherm showed the monolayer coverage of Mt-HDA surface adsorption sites, which was fitted with the Langmuir isotherm model in an exothermic process. The adsorption mechanism was studied.


Assuntos
Bentonita , Poluentes Químicos da Água , Adsorção , Aminas , Hidrocarbonetos , Concentração de Íons de Hidrogênio , Cinética , Tartrazina , Poluentes Químicos da Água/análise
7.
Environ Res ; 195: 110809, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515581

RESUMO

In the present study, a novel 1-butyl-3-methylimidazolium bromide (BmImBr) impregnated chitosan beads were prepared and characterized using different methods, including XRD, FT-IR, EDX, SEM and BET. The FTIR analysis revealed that the BmImBr was successfully conjugated with the chitosan in the beads structure. The prepared beads were used as an efficient sorbent for the fast removal of methylene blue, as cationic dye model, from aqueous solution, whereas just 25 min was required to reach 86% removal efficiency. The increasing of BmImBr amount improved the adsorption performance of prepared beads. Also, it was found that the dye can be higher adsorbed on the beads surface by increasing the sorbent dosage and pH of solution, while the optimum dosage and pH were obtained 3 mg/L and 11, respectively. The kinetic study showed that the MB adsorption onto the CS-BmImBr beads follows the pseudo-fist order model and the intrinsic penetration controls the adsorption process. The properties of prepared chitosan- BmImBr IL conjugation confirmed that it can be exploited as an efficient adsorbent in the wastewater treatment.


Assuntos
Quitosana , Nanoestruturas , Poluentes Químicos da Água , Adsorção , Hidrogéis , Concentração de Íons de Hidrogênio , Imidazóis , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Biol Macromol ; 155: 421-429, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224175

RESUMO

In the present study, novel ionic liquid-impregnated chitosan hydrogel beads (CS-TCMA) were fabricated via the reaction of tricaprylmethylammonium chloride (TCMA, Aliquat-336) with the chitosan's amino groups. They were used for the fast adsorption of Tetracycline (TC), as a pharmaceutical compound model, from aqueous solution. It was found that the impregnation of TCMA greatly improved the adsorption behaviour of chitosan toward TC. The optimum adsorbent was determined to be 3 mg/ L in a wide pH range of 5-11. It was a fast process, with a 90% removal efficiency in <45 min. The adsorption kinetic of TC on the CS-TCMA was well described by the pseudo-first-order model and intra-particle diffusion model. The adsorption also obeyed the Langmuir adsorption isotherm model and the maximum adsorption capacity obtained was 22.42 mg/g at 45 °C. The thermodynamic study also revealed the endothermic nature of the process. The adsorption mechanism was also studied.


Assuntos
Antibacterianos/isolamento & purificação , Quitosana/química , Hidrogéis/química , Compostos de Amônio Quaternário/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Antibacterianos/análise , Antibacterianos/metabolismo , Líquidos Iônicos/química , Cinética , Tetraciclina/análise , Tetraciclina/metabolismo , Termodinâmica , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
9.
Int J Biol Macromol ; 125: 989-998, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30572049

RESUMO

In this study, novel Aliquat-336 impregnated chitosan conjugation beads (CS-AL) were synthesised through the reaction of amino groups of chitosan with tricaprylylmethylammonium chloride. The prepared CS-AL was characterised by XRD, FTIR, SEM, EDX and BET analyses. The FTIR analysis showed that the Aliquat-336 ionic liquid was successfully inserted into the chitosan beads structure. It was used as an efficient adsorbent for the fast removal of Methyl orange and Alizarin, as two anionic azo dye models. The optimum adsorbent dosage was 2 g/L with high adsorption behaviour in a wide pH range of 7-11. The adsorption kinetics of the studied dyes onto CS-AL was well described by the pseudo-second-order model. In addition, the adsorption equilibrium study showed that it was fitted by the Langmuir isotherm model. The CS-AL beads could be easily separated by filtration after the adsorption process. The adsorption property of prepared CS-AL conjugation beads suggested it as a novel adsorbent for wastewater treatment.


Assuntos
Antraquinonas/isolamento & purificação , Compostos Azo/isolamento & purificação , Quitosana/química , Glicoconjugados/síntese química , Compostos de Amônio Quaternário/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...