Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 34(2): 392-407, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15619450

RESUMO

The fern genus Dryopteris (Dryopteridaceae) is represented in the Hawaiian Islands by 18 endemic taxa and one non-endemic, native species. The goals of this study were to determine whether Dryopteris in Hawai'i is monophyletic and to infer the biogeographical origins of Hawaiian Dryopteris by determining the geographical distributions of their closest living relatives. We sequenced two chloroplast DNA fragments, rbcL and the trnL-F intergenic spacer (IGS), for 18 Hawaiian taxa, 45 non-Hawaiian taxa, and two outgroup species. For individual fragments, we estimated phylogenetic relationships using Bayesian inference and maximum parsimony. We performed a combined analysis of both cpDNA fragments employing Bayesian inference, maximum parsimony, and maximum likelihood. These analyses indicate that Hawaiian Dryopteris is not monophyletic, and that there were at least five separate colonizations of the Hawaiian Islands by different species of dryopteroid ferns, with most of the five groups having closest relatives in SE Asia. The results suggest that one colonizing ancestor, perhaps from SE Asia, gave rise to eight endemic taxa (the glabra group). Another colonizing ancestor, also possibly from SE Asia, gave rise to a group of five endemic taxa (the exindusiate group). Dryopteris fusco-atra and its two varieties, which are endemic to Hawai'i, most likely diversified from a SE Asian ancestor. The Hawaiian endemic Nothoperanema rubiginosum has its closest relatives in SE Asia, and while the remaining two species, D. wallichiana and D. subbipinnata, are sister species, their biogeographical origins could not be determined from these analyses due to the widespread distributions of D. wallichiana and its closest non-Hawaiian relative.


Assuntos
Dryopteridaceae/genética , Filogenia , Teorema de Bayes , Havaí , Ribulose-Bifosfato Carboxilase/genética
2.
Mol Phylogenet Evol ; 26(3): 337-47, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12644395

RESUMO

Recent studies of the phylogeny of several groups of native Hawaiian vascular plants have led to significant insights into the origin and evolution of important elements of the Hawaiian flora. No groups of Hawaiian pteridophytes have been subjected previously to rigorous phylogenetic analysis. We conducted a molecular phylogenetic analysis of the endemic Hawaiian fern genus Adenophorus employing DNA sequence variation from three cpDNA fragments: rbcL, atpbeta, and the trnL-trnF intergenic spacer (IGS). In the phylogenetic analyses we employed maximum parsimony and Bayesian inference. Bayesian phylogenetic inference often provided stronger support for hypothetical relationships than did nonparametric bootstrap analyses. Although phylogenetic analyses of individual DNA fragments resulted in different patterns of relationships among species and varying levels of support for various clades, a combined analysis of all three sets of sequences produced one, strongly supported phylogenetic hypothesis. The primary features of that hypothesis are: (1) Adenophorus is monophyletic; (2) subgenus Oligadenus is paraphyletic; (3) the enigmatic endemic Hawaiian species Grammitis tenella is strongly supported as the sister taxon to Adenophorus; (4) highly divided leaf blades are evolutionarily derived in the group and simple leaves are ancestral; and, (5) the biogeographical origin of the common ancestor of the Adenophorus-G. tenella clade remains unresolved, although a neotropical origin seems most likely.


Assuntos
DNA de Cloroplastos/genética , Gleiquênias/classificação , Filogenia , Sequência de Bases , Teorema de Bayes , Gleiquênias/anatomia & histologia , Gleiquênias/genética , Geografia , Havaí , Dados de Sequência Molecular
3.
Evolution ; 54(3): 828-39, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10937256

RESUMO

The vascular-plant flora of the Hawaiian Islands is characterized by one of the highest rates of species endemism in the world. Among flowering plants, approximately 89% of species are endemic, and among pteridophytes, about 76% are endemic. At the single-island level, however, rates of species endemism vary dramatically between these two groups with 80% of angiosperms and only 6% of pteridophytes being single-island endemics. Thus, in many groups of Hawaiian angiosperms, it is possible to link studies of phylogeny, evolution, and biogeographic history at the interspecific and interisland levels. In contrast, the low level of single-island species endemism among Hawaiian pteridophytes makes similar interspecific and interisland studies nearly impossible. Higher levels of interisland gene flow may account for the different levels of single-island endemism in Hawaiian pteridophytes relative to angiosperms. The primary question we addressed in the present study was: Can we infer microevolutionary patterns and processes among populations within widespread species of Hawaiian pteridophytes wherein gene flow is probably common? To address this broad question, we conducted a population genetic study of the native Hawaiian colonizing species Odontosoria chinensis. Data from allozyme analyses allowed us to infer: (1) significant genetic differentiation among populations from different islands; (2) historical patterns of dispersal between particular pairs of islands; (3) archipelago-level patterns of dispersal and colonization; (4) founder effects among populations on the youngest island of Hawaii; and, (5) that this species primarily reproduces via outcrossing, but may possess a mixed-mating system.


Assuntos
Evolução Biológica , Variação Genética , Plantas/genética , Frequência do Gene , Havaí , Filogenia
4.
Trends Ecol Evol ; 6(7): 205, 1991 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21232459
5.
Genetics ; 121(4): 819-26, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17246492

RESUMO

Few studies of cpDNA have provided evolutionary and/or phylogenetic information at the intraspecific level. We analyzed restriction site variation using 19 endonucleases in 37 populations representing both diploid (2n = 14) and autotetraploid (2n = 28) Tolmiea menziesii. Seven restriction site mutations and five length mutations were observed. Although diploid and tetraploid Tolmiea have been intensively studied using nuclear markers, cpDNA variation provided additional evolutionary insights not revealed previously. The chloroplast genomes of diploid and tetraploid Tolmiea are as distinct as those of many pairs of congeneric species of angiosperms. Based on outgroup comparisons, the primitive chloroplast genome is present in tetraploid rather than diploid Tolmiea. These findings suggest that either: (1) diploid and tetraploid Tolmiea may have diverged since the origin of the autotetraploid, (2) the original diploid donor of the cytoplasm present in the tetraploid subsequently became extinct, or (3) the diploid was actually derived from the tetraploid via polyhaploidy. cpDNA variation also revealed that despite their close geographic proximity, diploid and tetraploid Tolmiea do not experience cytoplasmic gene flow. Last, three cytoplasmically distinct groups of diploid populations exist, two of which occupy distinct geographic areas. These findings demonstrate that, at least in some plant species, restriction fragment analysis of cpDNA can provide important evolutionary and phylogenetic information at low taxonomic levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA