Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 6(2): e16770, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21326615

RESUMO

BACKGROUND: Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys. METHODOLOGY/PRINCIPAL FINDINGS: RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, ß-galactosidase. Double immunostaining was performed for ß-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle's loop and distal tubules. CONCLUSIONS/SIGNIFICANCE: Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of endogenous retinoic acid in the kidney after birth, particularly in the collecting duct system.


Assuntos
Células Epiteliais/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Tretinoína/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Biomarcadores/análise , Biomarcadores/metabolismo , Células Epiteliais/citologia , Rim/citologia , Rim/metabolismo , Óperon Lac , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Distribuição Tecidual
2.
Nephron Exp Nephrol ; 114(4): e127-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20110732

RESUMO

BACKGROUND: Alb/TGF-beta(1) transgenic mice overexpress active transforming growth factor-beta(1) (TGF-beta(1)) in the liver, leading to increased circulating levels of the cytokine and progressive renal fibrosis. This study was designed to explore if exogenous all-trans retinoic acid (tRA) prevents renal fibrosis in this animal model. METHODS: The retinoid profile in kidney and liver of wild-type and Alb/TGF-beta(1) transgenic mice was examined by high-performance liquid chromatography and slow-release pellets containing different amounts of tRA were implanted subcutaneously to treat the Alb/TGF-beta(1) transgenic mice, starting at 1 week of age; mice were sacrificed 2 weeks later. RESULTS: Kidneys of 3-week-old wild-type mice had abundant tRA, which was completely absent in kidneys of the transgenic mice. Low doses of tRA (6-10.7 mg/kg/day) failed to affect renal fibrosis although it tended to suppress the mRNA expression of some molecular markers of fibrosis and retinal dehydrogenase 2 (RALDH2), a gene encoding a key tRA-synthesising enzyme. These tendencies disappeared, mortality tended to increase and RALDH2 and connective tissue growth factor (CTGF) mRNAs significantly increased in the medium-dose group (12.7-18.8 mg/kg/day). High doses (20.1-27.4 mg/kg/day) showed even higher toxicity with increased renal fibrosis and significant mortality. CONCLUSIONS: Alb/TGF-beta(1) transgenic mice are characterised by depletion of endogenous renal tRA. Exogenous tRA dose-dependently increases mortality and kidney fibrosis, which is associated with dose-dependent regulation of renal RALDH2 and CTGF mRNA expression.


Assuntos
Rim/metabolismo , Tretinoína/metabolismo , Tretinoína/toxicidade , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Modelos Animais de Doenças , Fibrose , Rim/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA