Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 41(14): 1384-1394, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32100900

RESUMO

Among all the pollutants in the atmosphere, CO2 has the highest impact on global warming, and with the rising levels of this pollutant, studies on developing various technologies to convert CO2 into carbon-neutral fuels and chemicals have become more valuable. In this work, we present a detailed computational study of electrochemical reduction of CO2 reaction (the CO2 RR) to methane and/or methanol over different transition metal-p block catalysts using density functional theory calculations. In addition to the catalyst structure, we studied reaction mechanisms using free energy diagrams that explain the product selectivity with respect to the competing hydrogen evolution reaction. Furthermore, we developed scaling relations between all the active C bound intermediate species with ΔG(CO*) and O bound species with ΔG(OH*) The limiting potential lines with ΔG(OH*) as the descriptor are much less negative compared to UL lines with ΔG(CO*) as the descriptor indicating that catalyst materials following pathways via OH- bound intermediate species require more negative potentials than CO*→ HCO* and CO2 → COOH* steps to convert into products. We developed thermodynamic volcano plots with two descriptors; the CO* and OH* binding free energies and determined the best catalyst material among the initially investigated catalyst materials expecting this plot will provide guidance to the future work on improving the activity of transition metal-p block catalysts for this important reduction reaction.

2.
Front Chem ; 7: 610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608270

RESUMO

Recent investigations reported in the open literature concerning the functionalization of graphene as a support material for transition metal nanoparticle catalysts have examined isolated systems for their potential Oxygen Reduction Reaction (ORR) activity. In this work we present results which characterize the ability to use functionalized graphene (via dopants B, N) to upshift and downshift the adsorption energy of mono-atomic oxygen, O* (the ORR activity descriptor on ORR Volcano Plots), for various compositions of 4-atom, 7-atom, and 19-atom sub-nanometer binary alloy/intermetallic transition metal nanoparticle catalysts on graphene (TMNP-MDG). Our results show several important and interesting features: (1) that the combination of geometric and electronic effects makes development of simple linear mixing rules for size/composition difficult; (2) that the transition from 4- to 7- to 19-atom TMNP on MDG has pronounced effects on ORR activity for all compositions; (3) that the use of B and N as dopants to modulate the graphene-TMNP electronic structure interaction can cause shifts in the oxygen adsorption energy of 0.5 eV or more; (4) that it might be possible to make specific doped-graphene-Ni x Cu y TMNP systems which fall close to the Volcano Peak for ORR. Our results point to systems which should be investigated experimentally and may improve the viability of future fuel cell or other ORR applications, and provide new paths for future investigations of more detail for TMNP-MDG screening.

3.
Heliyon ; 5(6): e01924, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31508514

RESUMO

The differences in relative adsorption energies for mono-atomic and diatomic prototype species (C,N,O,S,H,CO,NO,SO,CH,NH,H2,O2) relevant to catalytic processes such as Fischer-Tropsch and Ammonia Synthesis chemistry are investigated on the previously un-studied ( 10 1 ¯ 6 ) surface(s) of Co, Os, and Ru. Recent work in the literature has confirmed that catalytically relevant nanoparticles of HCP elements such as Co, Os, and Ru typically possess highly active 'B5' sites; unfortunately many early and extant theory and model-ing treatments of "stepped HCP surfaces" use ad-hoc created steps via manual deletion of atoms from an ideal HCP(0001) slab model. To date the differences in adsorption energies at various B5 step edge types, and any possible trends across the same type of B5 sites on various HCP catalyst species has not been thoroughly characterized. Our work in this manuscript uses the low energy ( 10 1 ¯ 6 ) Miller Index surface of Co, Os, and Ru which exposes 2 distinct and strongly adsorbing step edge sites, the B5B and B5A step edge which have been reported as relevant in the literature for Cobalt nanoparticle catalysis applications. Results from this study should be used to help further understand atomistic processes on the stepped surfaces of catalytically active HCP elements.

4.
Angew Chem Int Ed Engl ; 54(28): 8255-8, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26053610

RESUMO

The mechanism of nitric oxide electroreduction on Pt(111) is investigated using a combination of first principles calculations and electrokinetic rate theories. Barriers for chemical cleavage of N-O bonds on Pt(111) are found to be inaccessibly high at room temperature, implying that explicit electrochemical steps, along with the aqueous environment, play important roles in the experimentally observed formation of ammonia. Use of explicit water models, and associated determination of potential-dependent barriers based on Bulter-Volmer kinetics, demonstrate that ammonia is produced through a series of water-assisted protonation and bond dissociation steps at modest voltages (<0.3 V). In addition, the analysis sheds light on the poorly understood formation mechanism of nitrous oxide (N2 O) at higher potentials, which suggests that N2 O is not produced through a Langmuir-Hinshelwood mechanism; rather, its formation is facilitated through an Eley-Rideal-type process.


Assuntos
Amônia/química , Óxido Nítrico/química , Platina/química , Modelos Moleculares
5.
ACS Nano ; 7(4): 3086-94, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23488794

RESUMO

We demonstrate the self-assembly of C60 and pentacene (Pn) molecules into acceptor-donor heterostructures which are well-ordered and--despite the high degree of symmetry of the constituent molecules--chiral. Pn was deposited on Cu(111) to monolayer coverage, producing the random-tiling (R) phase as previously described. Atop R-phase Pn, postdeposited C60 molecules cause rearrangement of the Pn molecules into domains based on chiral supramolecular "pinwheels". These two molecules are the highest-symmetry achiral molecules so far observed to coalesce into chiral heterostructures. Also, the chiral pinwheels (composed of 1 C60 and 6 Pn each) may share Pn molecules in different ways to produce structures with different lattice parameters and degree of chirality. High-resolution scanning tunneling microscopy results and knowledge of adsorption sites allow the determination of these structures to a high degree of confidence. The measurement of chiral angles identical to those predicted is a further demonstration of the accuracy of the models. van der Waals density functional theory calculations reveal that the Pn molecules around each C60 are torsionally flexed around their long molecular axes and that there is charge transfer from C60 to Pn in each pinwheel.


Assuntos
Cristalização/métodos , Fulerenos/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Naftacenos/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
Phys Chem Chem Phys ; 14(24): 8644-52, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22588638

RESUMO

A combination of first principles Density Functional Theory calculations and thermochemical scaling relationships are employed to estimate the thermochemistry and kinetics of methanol decomposition on unsupported subnanometer metal clusters. The approach uses binding energies of various atomic and molecular species, determined on the pure metal clusters, to develop scaling relationships that are then further used to estimate the methanol decomposition thermodynamics for a series of pure and bimetallic clusters with four atoms per cluster. Additionally, activation energy barriers are estimated from Brønsted-Evans-Polanyi plots relating transition and final state energies on these clusters. The energetic results are combined with a simple, microkinetically-inspired rate expression to estimate reaction rates as a function of important catalytic descriptors, including the carbon and atomic oxygen binding energies to the clusters. Based on these analyses, several alloy clusters are identified as promising candidates for the methanol decomposition reaction.

8.
J Phys Chem Lett ; 3(12): 1668-73, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26285726

RESUMO

Improving the efficiency of electrocatalytic reduction of oxygen represents one of the main challenges for the development of renewable energy technologies. Here, we report the systematic evaluation of Pt-ternary alloys (Pt3(MN)1 with M, N = Fe, Co, or Ni) as electrocatalysts for the oxygen reduction reaction (ORR). We first studied the ternary systems on extended surfaces of polycrystalline thin films to establish the trend of electrocatalytic activities and then applied this knowledge to synthesize ternary alloy nanocatalysts by a solvothermal approach. This study demonstrates that the ternary alloy catalysts can be compelling systems for further advancement of ORR electrocatalysis, reaching higher catalytic activities than bimetallic Pt alloys and improvement factors of up to 4 versus monometallic Pt.

9.
Langmuir ; 22(19): 8096-103, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16952247

RESUMO

Density Functional Theory calculations have been used to predict the structures of dense glycine and alanine adlayers on Cu(3,1,17)(S). Facets of this chiral Cu surface result from adsorbate-induced surface reconstruction when glycine or alanine are adsorbed and annealed on Cu(100). We have calculated the surface energy changes associated with this surface reconstruction. Our results allow the enantiospecificity of this reconstruction following adsorption of enantiopure or racemic alanine on Cu(100) to be discussed. The overall stability of glycine and alanine adlayers on Cu(3,1,17)(S) arises from an interplay between the formation of chemical bonds with the Cu surface, deformations in the adsorbed molecules during adsorption, and intermolecular hydrogen bonds within the adlayer; none of these factors individually dominates.


Assuntos
Alanina/química , Cobre/química , Glicina/química , Simulação por Computador , Conformação Molecular , Teoria Quântica , Estereoisomerismo , Propriedades de Superfície
10.
J Chem Phys ; 124(7): 74703, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16497066

RESUMO

Adsorption of amino acids on Cu(100) is known experimentally to induce surface reconstructions featuring intrinsically chiral Cu(3,1,17) facets, but no information about the geometry of the molecules on these chiral facets is available. We present density-functional theory calculations for the structure of glycine and alanine at moderate coverages on Cu(3,1,17). As might be expected, molecules prefer to bind at the step edges on this surface rather than on the surface's (100)-oriented terraces. The adsorption of enantiopure alanine on Cu(3,1,17) is predicted to be weakly enantiospecific, with S-alanine being more stable on Cu(3,1,17)(S) than R-alanine. By comparing the surface energies of Cu(100) and Cu(3,1,17) in the presence of adsorbed glycine or alanine, our calculations provide insight into the driving force for chiral reconstructions of Cu(100) by amino acids.


Assuntos
Alanina/química , Cobre/química , Glicina/química , Absorção , Isomerismo , Conformação Molecular , Propriedades de Superfície
11.
J Phys Chem B ; 109(35): 16764-73, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16853135

RESUMO

We have determined the structures of dense adlayers of glycine and alanine on the Cu(110) and Cu(100) surfaces using plane wave density functional theory. These calculations resolve several experimental controversies regarding these structures. Glycine exists on Cu(110) as a single adlayer structure, while on Cu(100) two distinct glycine adlayers coexist. The glycine structures serve as useful starting points for constructing alanine adlayer structures. We considered separately the adsorption of enantiopure alanine and racemic alanine on each surface. Adlayers of enantiopure alanine are found to be closely related to the adlayers observed for glycine. Racemic alanine adlayers on Cu(110) are structurally analogous to those observed for glycine on this surface and adopt a pseudo-racemate ordering. On Cu(100), in contrast to glycine, racemic alanine is found to adopt a single adlayer structure that is an ordered racemate. Spontaneous segregation of molecular enantiomers does not occur in racemic adsorbed mixtures on either surface. Consideration of the orientationally distinct domains that may exist for each adlayer on these surfaces provides important information for the interpretation of the adlayer domain boundaries that are commonly observed in scanning tunneling microscopy images of amino acid adlayers. Examining this set of amino acid adlayers provides useful insight into the range of subtle behaviors that can arise in these and related systems where chiral molecules form ordered adlayers on flat metal surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...