Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(12): 7531-7538, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35290424

RESUMO

Nuclear spin singlet states are often found to allow long-lived storage of nuclear magnetization, which can form the basis of novel applications in spectroscopy, imaging, and in studies of dynamic processes. Precisely how long such polarization remains intact, and which factors affect its lifetime is often difficult to determine and predict. We present a combined experimental/computational study to demonstrate that molecular dynamics simulations and ab initio calculations can be used to fully account for the experimentally observed proton singlet lifetimes in ethyl-d5-propyl-d7-maleate in deuterated chloroform as solvent. The correspondence between experiment and simulations is achieved without adjustable parameters. These studies highlight the importance of considering unusual and difficult-to-control mechanisms, such as dipolar couplings to low-gamma solvent nuclei, and to residual paramagnetic species, which often can represent lifetime limiting factors. These results also point to the power of molecular dynamics simulations to provide insights into little-known NMR relaxation mechanisms.

2.
J Chem Phys ; 155(14): 144302, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654304

RESUMO

The interactions between atoms and molecules may be described by a potential energy function of the nuclear coordinates. Nonbonded interactions between neutral atoms or molecules are dominated by repulsive forces at a short range and attractive dispersion forces at a medium range. Experimental data on the detailed interaction potentials for nonbonded interatomic and intermolecular forces are scarce. Here, we use terahertz spectroscopy and inelastic neutron scattering to determine the potential energy function for the nonbonded interaction between single He atoms and encapsulating C60 fullerene cages in the helium endofullerenes 3He@C60 and 4He@C60, synthesized by molecular surgery techniques. The experimentally derived potential is compared to estimates from quantum chemistry calculations and from sums of empirical two-body potentials.

3.
J Am Chem Soc ; 142(40): 16926-16929, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32945165

RESUMO

The solution-state 13C NMR spectrum of the endofullerene 3He@C60 displays a doublet structure due to a J-coupling of magnitude 77.5 ± 0.2 mHz at 340 K between the 3He nucleus and a 13C nucleus of the enclosing carbon surface. The J-coupling increases in magnitude with increasing temperature. Quantum chemistry calculations successfully predict the approximate magnitude of the coupling. This observation shows that the mutual proximity of molecular or atomic species is sufficient to induce a finite scalar nuclear spin-spin coupling, providing that translational motion is restricted by confinement. The phenomenon may have applications to the study of surface interactions and to mechanically bound species.

4.
J Chem Phys ; 141(1): 014109, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005279

RESUMO

The ability to quantitatively predict and analyze the rate of electron spin relaxation of open-shell systems is important for electron paramagnetic resonance and paramagnetic nuclear magnetic resonance spectroscopies. We present a combined molecular dynamics (MD), quantum chemistry (QC), and spin dynamics simulation method for calculating such spin relaxation rates. The method is based on the sampling of a MD trajectory by QC calculations, to produce instantaneous parameters of the spin Hamiltonian used, in turn, to numerically solve the Liouville-von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach by simulating the relaxation of electron spin in an aqueous solution of Ni(2+) ion. The spin-lattice (T1) and spin-spin (T2) relaxation rates are extracted directly from the simulations of the time dependence of the longitudinal and transverse magnetization, respectively. Good agreement with the available, indirectly obtained experimental data is obtained by our method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA