Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 167: 31-38, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37230876

RESUMO

Landfill gas (LFG) is formed by microorganisms within a landfill; it can be utilized as a renewable fuel in power plants. Impurities such as hydrogen sulfide and siloxanes can cause significant damage to gas engines and turbines. The aim of this study was to determine the filtration efficiencies of biochar products made of birch and willow to remove hydrogen sulfides, siloxanes, and volatile organic compounds from the gas streams compared to activated carbon. Experiments were conducted on a laboratory scale with model compounds and in a real LFG power plant where microturbines are used to generate power and heat. The biochar filters removed heavier siloxanes effectively in all of the tests. However, the filtration efficiency for volatile siloxane and hydrogen sulfide declined quickly. Biochars are promising filter materials but require further research to improve their performance.


Assuntos
Sulfeto de Hidrogênio , Gases , Carvão Vegetal , Siloxanas , Biocombustíveis , Instalações de Eliminação de Resíduos
2.
PLoS Negl Trop Dis ; 15(6): e0009533, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185780

RESUMO

Visceral leishmaniasis is a vector-borne protozoan infection that is fatal if untreated. There is no vaccination against the disease, and the current chemotherapeutic agents are ineffective due to increased resistance and severe side effects. Buparvaquone is a potential drug against the leishmaniases, but it is highly hydrophobic resulting in poor bioavailability and low therapeutic efficacy. Herein, we loaded the drug into silicon nanoparticles produced from barley husk, which is an agricultural residue and widely available. The buparvaquone-loaded nanoparticles were several times more selective to kill the intracellular parasites being non-toxic to macrophages compared to the pure buparvaquone and other conventionally used anti-leishmanial agents. Furthermore, the in vivo results revealed that the intraperitoneally injected buparvaquone-loaded nanoparticles suppressed the parasite burden close to 100%. By contrast, pure buparvaquone suppressed the burden only by 50% with corresponding doses. As the conclusion, the biogenic silicon nanoparticles are promising carriers to significantly improve the therapeutic efficacy and selectivity of buparvaquone against resistant visceral leishmaniasis opening a new avenue for low-cost treatment against this neglected tropical disease threatening especially the poor people in developing nations.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Nanopartículas/administração & dosagem , Naftoquinonas/uso terapêutico , Animais , Antiprotozoários/administração & dosagem , Portadores de Fármacos , Feminino , Hordeum , Injeções Intraperitoneais , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Naftoquinonas/administração & dosagem , Naftoquinonas/efeitos adversos , Silício/química
3.
ACS Appl Mater Interfaces ; 12(42): 47233-47244, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32970405

RESUMO

Complex experimental design is a common problem in the preparation of theranostic nanoparticles, resulting in poor reaction control, expensive production cost, and low experiment success rate. The present study aims to develop PEGylated bismuth (PEG-Bi) nanoparticles with a precisely controlled one-pot approach, which contains only methoxy[(poly(ethylene glycol)]trimethoxy-silane (PEG-silane) and bismuth oxide (Bi2O3). A targeted pyrolysis of PEG-silane was achieved to realize its roles as both the reduction and PEGylation agents. The unwanted methoxy groups of PEG-silane were selectively pyrolyzed to form reductive agents, while the useful PEG-chain was fully preserved to enhance the biocompatibility of Bi nanoparticles. Moreover, Bi2O3 not only acted as the raw material of the Bi source but also presented a self-promotion in the production of Bi nanoparticles via catalyzing the pyrolysis of PEG-silane. The reaction mechanism was systematically validated with different methods such as nuclear magnetic resonance spectroscopy. The PEG-Bi nanoparticles showed better compatibility and photothermal conversion than those prepared by the complex multiple step approaches in literature studies. In addition, the PEG-Bi nanoparticles possessed prominent performance in X-ray computed tomography imaging and photothermal cancer therapy in vivo. The present study highlights the art of precise reaction control in the synthesis of PEGylated nanoparticles for biomedical applications.


Assuntos
Bismuto/farmacologia , Nanopartículas/química , Terapia Fototérmica , Animais , Bismuto/administração & dosagem , Bismuto/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Estrutura Molecular , Nanopartículas/administração & dosagem , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/tratamento farmacológico , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Pirólise/efeitos dos fármacos , Células RAW 264.7 , Propriedades de Superfície , Tomografia Computadorizada por Raios X
4.
Int J Pharm ; 554: 327-336, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30391665

RESUMO

The inability of traditional chemotherapeutics to reach cancer tissue reduces the treatment efficacy and leads to adverse effects. A multifunctional nanovector was developed consisting of porous silicon, superparamagnetic iron oxide, calcium carbonate, doxorubicin and polyethylene glycol. The particles integrate magnetic properties with the capacity to retain drug molecules inside the pore matrix at neutral pH to facilitate drug delivery to tumor tissues. The MRI applicability and pH controlled drug release were examined in vitro together with in-depth material characterization. The in vivo biodistribution and compound safety were verified using A549 lung cancer bearing mice before proceeding to therapeutic experiments using CT26 cancer implanted mice. Loading doxorubicin into the porous nanoparticle negated the adverse side effects encountered after intravenous administration highlighting the particles' excellent biocompatibility. Furthermore, the multifunctional nanovector induced 77% tumor reduction after intratumoral injection. The anti-tumor effect was comparable with that of free doxorubicin but with significantly alleviated unwanted effects. These results demonstrate that the developed porous silicon-based nanoparticles represent promising multifunctional drug delivery vectors for cancer monitoring and therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Excipientes/química , Células A549 , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/toxicidade , Química Farmacêutica/métodos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Preparações de Ação Retardada , Doxorrubicina/farmacocinética , Doxorrubicina/toxicidade , Liberação Controlada de Fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas , Porosidade , Silício/química , Distribuição Tecidual
5.
ACS Appl Mater Interfaces ; 10(28): 23529-23538, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29905461

RESUMO

Porous silicon (PSi) has attracted wide interest as a potential material for various fields of nanomedicine. However, until now, the application of PSi in photothermal therapy has not been successful due to its low photothermal conversion efficiency. In the present study, biodegradable black PSi (BPSi) nanoparticles were designed and prepared via a high-yield and simple reaction. The PSi nanoparticles possessed a low band gap of 1.34 eV, a high extinction coefficient of 13.2 L/g/cm at 808 nm, a high photothermal conversion efficiency of 33.6%, good photostability, and a large surface area. The nanoparticles had not only excellent photothermal properties surpassing most of the present inorganic photothermal conversion agents (PCAs) but they also displayed good biodegradability, a common problem encountered with the inorganic PCAs. The functionality of the BPSi nanoparticles in photothermal therapy was verified in tumor-bearing mice in vivo. These results showed clearly that the photothermal treatment was highly efficient to inhibit tumor growth. The designed PCA material of BPSi is robust, easy to prepare, biocompatible, and therapeutically extremely efficient and it can be integrated with several other functionalities on the basis of simple silicon chemistry.


Assuntos
Nanopartículas , Animais , Hipertermia Induzida , Camundongos , Nanomedicina , Fototerapia , Porosidade , Silício
6.
Eur J Pharm Sci ; 95: 72-81, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27221369

RESUMO

Microscale freeze-drying makes rapid process cycles possible for early-stage formulation development. To investigate the effects of equipment scale and cooling rate on the solid state properties and the protein's secondary structure of a sample, three binary formulations of catalase were prepared and freeze-dried with sucrose, mannitol, or (2-hydroxypropyl)-ß-cyclodextrin (HP-ß-CD). The protein's secondary structure was assessed using attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR). The solid state properties were assessed using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results were interpreted with respect to the biological activity of catalase after its reconstitution. According to the results of both the protein secondary structure and the reconstituted biological activity, scale-up could be achieved with the sucrose-catalase formulation when it was prepared at a high cooling rate and with the mannitol-catalase formulation when prepared at a low cooling rate. However, differences in the polymorph composition of crystalline mannitol were noted. No cooling rate influence was found with the HP-ß-CD formulation. The results clearly indicate that the effects of the cooling rate should be closely examined during microscale formulation development and scale-up of the freeze-drying process.


Assuntos
Temperatura Baixa , Excipientes/química , Liofilização/métodos , Composição de Medicamentos , Excipientes/análise , Liofilização/tendências , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/tendências , Difração de Raios X/métodos , Difração de Raios X/tendências
7.
Biomaterials ; 52: 44-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818412

RESUMO

Mesoporous materials are promising candidates for improving dissolution rate of poorly water-soluble drugs in vitro and their bioavailability in vivo. In the present study, sixteen batches of celecoxib-loaded PSi particles with pore sizes ranging from 17 to 58 nm and celecoxib content from 5 to 36 w-% were prepared and a detailed physicochemical characterization of the drug was performed by several methods. Interaction between co-culture of Caco-2/HT29-MTX cells and unloaded PSi particles was tested in toxicity assays, and increased toxicity for particles with large pore size was observed. Dissolution rate of celecoxib was improved in vitro by lowering the drug loading degree which hindered the recrystallization of celecoxib on the external surface of the particles. The fastest permeation of loaded celecoxib through the co-culture monolayer as well as the highest bioavailability in rats was observed with the particles with small pore size and low loading degree. New insights were obtained on how various parameters of the mesoporous delivery system affect the state of the drug inside the pores and its release in vitro and in vivo.


Assuntos
Celecoxib/administração & dosagem , Celecoxib/farmacocinética , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/farmacocinética , Portadores de Fármacos/química , Silício/química , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Técnicas de Cocultura , Humanos , Masculino , Tamanho da Partícula , Porosidade , Ratos Sprague-Dawley , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...