Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 19(1): 22, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771543

RESUMO

SARS-CoV-2 spike proteins have been shown to cross the blood-brain barrier (BBB) in mice and affect the integrity of human BBB cell models. However, the effects of SARS-CoV-2 spike proteins in relation to sporadic, late onset, Alzheimer's disease (AD) risk have not been extensively investigated. Here we characterized the individual and combined effects of SARS-CoV-2 spike protein subunits S1 RBD, S1 and S2 on BBB cell types (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) generated from induced pluripotent stem cells (iPSCs) harboring low (APOE3 carrier) or high (APOE4 carrier) relative Alzheimer's risk. We found that treatment with spike proteins did not alter iBEC integrity, although they induced the expression of several inflammatory cytokines. iAstrocytes exhibited a robust inflammatory response to SARS-CoV-2 spike protein treatment, with differences found in the levels of cytokine secretion between spike protein-treated APOE3 and APOE4 iAstrocytes. Finally, we tested the effects of potentially anti-inflammatory drugs during SARS-CoV-2 spike protein exposure in iAstrocytes, and discovered different responses between spike protein treated APOE4 iAstrocytes and APOE3 iAstrocytes, specifically in relation to IL-6, IL-8 and CCL2 secretion. Overall, our results indicate that APOE3 and APOE4 iAstrocytes respond differently to anti-inflammatory drug treatment during SARS-CoV-2 spike protein exposure with potential implications to therapeutic responses.


Assuntos
Apolipoproteína E3 , Apolipoproteína E4 , Astrócitos , Barreira Hematoencefálica , Citocinas , Glicoproteína da Espícula de Coronavírus , Barreira Hematoencefálica/metabolismo , Humanos , Citocinas/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Astrócitos/metabolismo , Astrócitos/virologia , Astrócitos/efeitos dos fármacos , Apolipoproteína E3/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/imunologia , Células Cultivadas
2.
Neurotherapeutics ; 21(1): e00299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241156

RESUMO

The blood-brain barrier (BBB) has a key function in maintaining homeostasis in the brain, partly modulated by transporters, which are highly expressed in brain endothelial cells (BECs). Transporters mediate the uptake or efflux of compounds to and from the brain and they can also challenge the delivery of drugs for the treatment of Alzheimer's disease (AD). Currently there is a limited understanding of changes in BBB transporters in AD. To investigate this, we generated brain endothelial-like cells (iBECs) from induced pluripotent stem cells (iPSCs) with familial AD (FAD) Presenilin 1 (PSEN1) mutation and identified AD-specific differences in transporter expression compared to control (ctrl) iBECs. We first characterized the expression levels of 12 BBB transporters in AD-, Ctrl-, and isogenic (PSEN1 corrected) iBECs to identify any AD specific differences. We then exposed the cells to focused ultrasound (FUS) in the absence (FUSonly) or presence of microbubbles (MB) (FUS+MB), which is a novel therapeutic method that can be used to transiently open the BBB to increase drug delivery into the brain, however its effects on BBB transporter expression are largely unknown. Following FUSonly and FUS+MB, we investigated whether the expression or activity of key transporters could be modulated. Our findings demonstrate that PSEN1 mutant FAD (PSEN1AD) possess phenotypical differences compared to control iBECs in BBB transporter expression and function. Additionally, we show that FUSonly and FUS+MB can modulate BBB transporter expression and functional activity in iBECs, having potential implications on drug penetration and amyloid clearance. These findings highlight the differential responses of patient cells to FUS treatment, with patient-derived models likely providing an important tool for modelling therapeutic effects of FUS.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Células Endoteliais/metabolismo , Preparações Farmacêuticas/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica , Proteínas de Membrana Transportadoras/metabolismo
3.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291125

RESUMO

An early symptom of Alzheimer's disease (AD) is an impaired sense of smell, for which the molecular basis remains elusive. Here, we generated human olfactory neurosphere-derived (ONS) cells from people with AD and mild cognitive impairment (MCI), and performed global RNA sequencing to determine gene expression changes. ONS cells expressed markers of neuroglial differentiation, providing a unique cellular model to explore changes of early AD-associated pathways. Our transcriptomics data from ONS cells revealed differentially expressed genes (DEGs) associated with cognitive processes in AD cells compared to MCI, or matched healthy controls (HC). A-Kinase Anchoring Protein 6 (AKAP6) was the most significantly altered gene in AD compared to both MCI and HC, and has been linked to cognitive function. The greatest change in gene expression of all DEGs occurred between AD and MCI. Gene pathway analysis revealed defects in multiple cellular processes with aging, intellectual deficiency and alternative splicing being the most significantly dysregulated in AD ONS cells. Our results demonstrate that ONS cells can provide a cellular model for AD that recapitulates disease-associated differences. We have revealed potential novel genes, including AKAP6 that may have a role in AD, particularly MCI to AD transition, and should be further examined.


Assuntos
Doença de Alzheimer , Cognição , Expressão Gênica , Mucosa Olfatória , Células-Tronco , Humanos , Proteínas de Ancoragem à Quinase A/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Células Cultivadas
4.
Stem Cell Reports ; 14(5): 924-939, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32275861

RESUMO

The blood-brain barrier (BBB) presents a barrier for circulating factors, but simultaneously challenges drug delivery. How the BBB is altered in Alzheimer disease (AD) is not fully understood. To facilitate this analysis, we derived brain endothelial cells (iBECs) from human induced pluripotent stem cells (hiPSCs) of several patients carrying the familial AD PSEN1 mutation. We demonstrate that, compared with isogenic PSEN1 corrected and control iBECs, AD-iBECs exhibit altered tight and adherens junction protein expression as well as efflux properties. Furthermore, by applying focused ultrasound (FUS) that transiently opens the BBB and achieves multiple therapeutic effects in AD mouse models, we found an altered permeability to 3-5 kDa dextran as a model cargo and the amyloid-ß (Aß) peptide in AD-iBECs compared with control iBECs. This presents human-derived in vitro models of the BBB as a valuable tool to understand its role and properties in a disease context, with possible implications for drug delivery.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Doença de Alzheimer/terapia , Animais , Barreira Hematoencefálica/citologia , Linhagem Celular , Células Cultivadas , Conexinas/metabolismo , Dextranos/farmacocinética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fenótipo , Presenilina-1/genética , Terapia por Ultrassom
5.
Genes Chromosomes Cancer ; 51(6): 557-68, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22344632

RESUMO

MicroRNAs (miRNAs) are short single-stranded RNA molecules that have a critical role in the regulation of gene expression. Alterations in miRNA expression levels have been observed in multiple tumor types and there is clear evidence on their active involvement in cancer development. Here, a comprehensive miRNA expression profiling in 16 pancreatic cancer cell lines and four normal pancreatic samples provided a specific molecular signature for pancreatic cancer and enabled us to identify 72 differentially expressed miRNAs with approximately half of them being up- and half downregulated in cancer cells as compared with normal samples. Of these, miR-31 was selected for further functional analyses based on its interesting "on-off" type expression profile, i.e., very low or even absent expression in normal pancreas and in six of the pancreatic cancer samples but extremely high expression in the remaining 10 cell lines. Quite unexpectedly, both the inhibition of miR-31 in AsPC-1 and HPAF-II pancreatic cancer cells with high endogenous expression and forced expression of miR-31 in MIA PaCa-2 with low endogenous levels led to reduced cell proliferation, migration, and invasion. More importantly, in AsPC-1 cells further enhancement of miR-31 also resulted in reduced cell migration and invasion, implicating that the level of miR-31 is critical for these phenotypes. This study highlights a specific miRNA expression pattern in pancreatic cancer and reveals that manipulation of miR-31 expression leads to reduced cell migration and invasion in pancreatic cancer.


Assuntos
Movimento Celular/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Estudos de Casos e Controles , Processos de Crescimento Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA