Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Environ Sci Technol ; 58(5): 2502-2513, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277687

RESUMO

Wildfires at the wildland-urban interface (WUI) are increasing in frequency and intensity, driven by climate change and anthropogenic ignitions. Few studies have characterized the variability in the metal content in ash generated from burned structures in order to determine the potential risk to human and environmental health. Using inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed leachable trace metal concentration in soils and ash from structures burned by the Marshall Fire, a WUI fire that destroyed over 1000 structures in Boulder County, Colorado. Acid digestion revealed that ash derived from structures contained 22 times more Cu and 3 times more Pb on average than surrounding soils on a mg/kg basis. Ash liberated 12 times more Ni (mg/kg) and twice as much Cr (mg/kg) as soils in a water leach. By comparing the amount of acid-extractable metals to that released by water and simulated epithelial lung fluid (SELF), we estimated their potential for environmental mobility and human bioaccessibility. The SELF leach showed that Cu and Ni were more bioaccessible (mg of leachable metal/mg of acid-extractable metal) in ash than in soils. These results suggest that structure ash is an important source of trace metals that can negatively impact the health of both humans and the environment.


Assuntos
Metais Pesados , Oligoelementos , Incêndios Florestais , Humanos , Oligoelementos/análise , Metais/análise , Solo/química , Água , Metais Pesados/química
2.
Sci Total Environ ; 912: 168686, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000751

RESUMO

A key requirement for evaluating the safety of nano-enabled water treatment devices is measuring concentrations of insoluble nanomaterials released from devices into water that may be ingested by consumers. Therefore, there is a need for simple technique that uses commonly available commercial laboratory techniques to discriminate between nanoparticles and dissolved by-products of the nanomaterial (e.g., ionic metals). Such capabilities would enable screening for particulate or dissolved metals released into water from nanomaterial-containing drinking water contact materials (e.g., paint coatings) or devices (e.g., filters). This multi-laboratory study sought to investigate the use of relatively inexpensive centrifugal ultrafilters to separate nanoparticulate from ionic metal in combination with inductively-coupled plasma mass spectrometry (ICP-MS) detection. The accuracy, precision, and reproducibility for the proposed method were assessed using mixtures of nanoparticulate and ionic gold (Au) in a standard and widely utilized model water matrix (NSF International Standard 53/61). Concentrations for both ionic and nanoparticulate gold based upon measurements of Au mass in the initial solutions and Au permeating the centrifugal ultrafilters. Results across different solution compositions and different participating labs showed that ionic and nanoparticulate Au could be consistently discriminated with ppb concentrations typically resulting in <10 % error. A mass balance was not achieved because nanoparticles were retained on membranes embedded in plastic holders inside the centrifuge tubes, and the entire apparatus could not be acid and/or microwave digested. This was a minor limitation considering the ultrafiltration method is a screening tool, and gold concentration in the permeate indicates the presence of ionic metal rather than nanoforms. With further development, this approach could prove to be an effective tool in screening for nanomaterial release from water-system or device materials as part of third-party certification processes of drinking water compatible products.


Assuntos
Água Potável , Nanopartículas Metálicas , Espectrometria de Massas/métodos , Água Potável/análise , Ultrafiltração , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Ouro/química
3.
Sci Total Environ ; 898: 165492, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453708

RESUMO

Artisanal and small-scale gold mining (ASGM) is the leading global source of anthropogenic mercury (Hg) release to the environment. Top-down mercury reduction efforts have had limited results, but a bottom-up embrace of cyanide (CN) processing could eventually displace mercury amalgamation for gold recovery. However, ASGM transitions to cyanidation nearly always include an overlap phase, with mercury amalgamation then cyanidation being used sequentially. This paper uses a transdisciplinary approach that combines natural and social sciences to develop a holistic picture of why mercury and cyanide converge in gold processing and potential impacts that may be worse than either practice in isolation. We show that socio-economic factors drive the comingling of mercury and cyanide practices in ASGM as much or more so than technical factors. The resultant Hg-CN complexes have been implicated in increasing the mobility of mercury, compared to elemental mercury used in Hg-only processing. To support future inquiry, we identify key knowledge gaps including the role of Hg-CN complexes in mercury oxidation, transport, and fate, and possible links to mercury methylation. The global extent and increase of mercury and cyanide processing in ASGM underscores the importance of further research. The immediacy of the problem also demands interim policy responses while research advances, though ultimately, the well-documented struggles of mercury reduction efforts in ASGM temper optimism about policy responses to the mercury-cyanide transition.

4.
Sci Total Environ ; 884: 163725, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116809

RESUMO

This study investigated critical metal (CM) geochemistry including rare earth elements (REEs), Co, Ni, and Mn in groundwaters below and surrounding two dredged material placement facilities (DMPFs). Metal concentrations are elevated at both sites, spanning several orders of magnitude. The highest CM concentrations measured exceed many environments considered as aqueous resources (Co and Ni > 1 mg L-1, REEs > 3 mg L-1). Correlations between sulfur and iron, major cations, and CMs indicate that oxidation of sulfides present in the DM releases metals both directly from sulfide minerals and indirectly through acid dissolution of and/or desorption from additional minerals. REE fractionation patterns indicate that their mobility in the groundwaters may be influenced by interactions with silicate, carbonate, and phosphate minerals. Significant positive Gd and Eu anomalies were observed, which may be attributed to increased mobility of Eu2+ and anthropogenic Gd. Nanogeochemical analysis of filtered samples revealed several REE-bearing nanoparticulate (diameter < 100 nm) species, some of which co-occurred with aluminum, suggesting an (oxy)hydroxide or a clay mineral component. Further characterization of soluble and nano scale geochemical speciation is needed to fully assess the viability of CM recovery from DM-associated groundwater. CM recovery from DM-associated waters can provide a beneficial use, both offsetting costs associated with disposal, and supplementing domestic CM resources.


Assuntos
Água Subterrânea , Metais Terras Raras , Monitoramento Ambiental , Metais/análise , Metais Terras Raras/análise , Água Subterrânea/química , Minerais/análise
5.
Sci Total Environ ; 876: 162478, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36871713

RESUMO

Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic). Both biomats accumulated detectable background concentrations of metals of toxicological concern (Zn, Cu, Pb, and Ni) by assimilation from waters that did not exceed regulatory thresholds for these metals. Augmentation in laboratory microcosms with a mixture of these metals at ecotoxicologically relevant concentrations revealed a further capacity for metal removal (83-100 %). Experimental concentrations encapsulated the upper range of surface waters in the metal-impaired Tambo watershed in Peru, where a passive treatment technology such as this could be applied. Sequential extractions demonstrated that metal removal by mineral fractions is more important in Prado than MP biomat, possibly due to a higher proportion and mass of iron and other minerals from Prado-derived materials. Geochemical modeling using PHREEQC suggests that in addition to sorption/surface complexation of metals to mineral phases (modeled as iron (oxyhydr)oxides), diatom and bacterial functional groups (carboxyl, phosphoryl, and silanol) also play an important role in soluble metal removal. By comparing sequestered metal phases across these biomats with differing inorganic content, we propose that sorption/surface complexation and incorporation/assimilation of both inorganic and organic constituents of the biomat play a dominant role in metal removal potential by UPOW wetlands. This knowledge could be applied to passively treat metal impaired waters in analogous and remote regions.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Água , Minerais , Ferro , Poluentes Químicos da Água/análise
6.
Environ Sci Process Impacts ; 25(3): 405-414, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36629138

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are frequently found at high concentrations in the subsurface of aqueous film forming foam (AFFF)-impacted sites. Geochemical parameters affect the release of PFASs from source area soils into groundwater but have not been extensively studied for soils that have been historically impacted with AFFF. This study investigated the effects of pH and salt concentrations on release of anionic and zwitterionic PFASs from AFFF-impacted soils in flow-through saturated columns. High pH (10) columns with elevated sodium concentrations had higher cumulative masses eluted of several PFASs compared to pH 3 and pH 7 columns with lower sodium concentrations, likely caused by changes to soil organic matter surface charge. Four PFASs (e.g. 4:2 fluorotelomer sulfonate, perfluorobutane sulfonamido acetic acid) eluted significantly earlier in both pH 3 and pH 10/high NaCl columns compared to pH 7 columns. The results of this study suggest that shifts in pH for soils located at AFFF-impacted sites - particularly raising the pH - may mobilize sorbed PFASs, specifically longer-chain and zwitterionic compounds that are typically strongly sorbed to soil.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Solo , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Fenômenos Químicos , Água , Água Subterrânea/química
7.
Environ Toxicol Chem ; 42(2): 495-511, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349955

RESUMO

We monitored physical-chemical conditions in the North Fork of Clear Creek in Colorado (USA) before, during, and after the start of remediation (lime treatment) to remove metals from two major inputs of acid mine drainage (AMD) water. In addition, we analyzed historical monitoring data that extended back more than two decades. Concentration-discharge (C-D) and load-discharge (L-D) plots accounted for discharge dependence in concentrations and loads of metals, major ions, and other water chemistry parameters. Total and dissolved concentrations, and loads of the metals decreased after remediation began, with the largest decreases usually during low stream flow. However, postremediation concentrations and loads remained slightly to considerably higher than reference, probably because of unidentified groundwater seeps and/or small surface flows. Dissolved Cu concentrations decreased much less than total Cu concentrations, because the percentage of total Cu in the dissolved phase increased considerably as particulate Fe (PFe) concentration decreased. We conclude that 1) water chemistry can change to a new steady state or pseudo-steady state relatively quickly after major AMD inputs to a stream are remediated; 2) elevated flows during snowmelt and rainfall periods can mobilize additional amounts of major ions and metals, resulting in in-stream concentrations that are manifestations of both dilution and mobilization; 3) although lime treatment of AMD-related waters can decrease metal concentrations, it does not decrease elevated concentrations of major ions that might impair sensitive stream invertebrates; 4) although Fe is toxic to aquatic organisms, PFe adsorbs other metals and thereby provides protection against their toxicity; and 5) use of C-D and L-D plots and element ratios can indicate the presence of unidentified AMD inputs to a stream. Environ Toxicol Chem 2023;42:495-511. © 2022 SETAC.


Assuntos
Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Metais , Água , Monitoramento Ambiental
8.
Environ Toxicol Chem ; 42(2): 449-462, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484737

RESUMO

Dissolved copper (Cu) can contribute to toxicity in aquatic systems impacted by acid mine drainage (AMD), and its bioavailability is influenced by aqueous complexation with organic ligands that predominantly include fulvic acids (FAs). Because the geochemical fractionation of FAs that accompanies sorption to hydrous aluminum oxides (HAOs) and hydrous iron oxides (HFOs) can alter Cu complexation with FA, we investigated FAs isolated from three categories of water (pristine, AMD, and in situ-fractionated mixtures of pristine and AMD collected at stream confluences) in three mining-impacted alpine watersheds in central Colorado, USA. We also conducted geochemical fractionation of field-collected FAs and Suwannee River FAs by precipitating HAOs and HFOs in the laboratory. Spectral properties of the FAs (e.g., UV-VIS absorbance) were altered by geochemical fractionation, and in acute toxicity tests with an aquatic invertebrate (Daphnia magna) Cu was more toxic in the presence of in situ- and laboratory-fractionated FAs (median effect concentration [EC50] 19-50 µg Cu L-1 ) than in the presence of nonfractionated FAs (EC50 48-146 µg Cu L-1 ). After adjusting for the strain-specific sensitivity of our D. magna, we improved the accuracy of Biotic Ligand Model predictions of Cu EC50 values for AMD-related FAs by using an "effective dissolved organic carbon" based on spectral properties that account for among-FA differences in protectiveness against Cu toxicity. However, some differences remained between predicted and measured EC50 values, especially for FAs from AMD-related waters that might contain important metal-binding moieties not accounted for by our measured spectral indices. Environ Toxicol Chem 2023;42:449-462. © 2022 SETAC.


Assuntos
Cobre , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/química , Daphnia , Benzopiranos , Água , Ligantes , Poluentes Químicos da Água/química
9.
Environ Toxicol Chem ; 42(2): 512-524, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345954

RESUMO

Responses of stream ecosystems to gradual reductions in metal loading following remediation or restoration activities have been well documented in the literature. However, much less is known about how these systems respond to the immediate or more rapid elimination of metal inputs. Construction of a water treatment plant on the North Fork of Clear Creek (NFCC; CO, USA), a US Environmental Protection Agency Superfund site, captured, diverted, and treated the two major point-source inputs of acid mine drainage (AMD) and provided an opportunity to investigate immediate improvements in water quality. We conducted a 9-year study that included intensive within- and among-year monitoring of receiving-stream chemistry and benthic communities before and after construction of the treatment plant. Results showed a 64%-86% decrease in metal concentrations within months at the most contaminated sites. Benthic communities responded with increased abundance and diversity, but downstream stations remained impaired relative to reference conditions, with significantly lower taxonomic richness represented by a few dominant taxa (i.e., Baetis sp., Hydropsyche sp., Simulium sp., Orthocladiinae). Elevated metal concentrations from apparent residual sources, and relatively high conductivity from contributing major ions not removed during the treatment process, are likely limiting downstream recovery. Our study demonstrates that direct AMD treatment can rapidly improve water quality and benefit aquatic life, but effectiveness is limited, in part, to the extent that inputs of metals are captured and treated. Consideration should also be given to the effects of elevated major ion concentrations from the treated effluent not removed during the lime treatment process. Continued chemical and biological monitoring will be needed to quantify the NFCC recovery trajectory and to inform future remediation strategies. Environ Toxicol Chem 2023;42:512-524. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Ecossistema , Poluentes Químicos da Água , Humanos , Animais , Monitoramento Ambiental/métodos , Metais , Qualidade da Água , Mineração , Ácidos
10.
ACS Earth Space Chem ; 6(4): 943-952, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35495366

RESUMO

Nanogeochemistry is an emerging focus area recognizing the role of nanoparticles in Earth systems. Engineered nanotechnology has cultivated advanced analytical techniques that are also applicable to nanogeochemistry. Single particle inductively coupled plasma ICP-time-of-flight-mass spectrometry (ICP-TOF-MS) promises a significant step forward, as time-of-flight mass analyzers enable simultaneous quantification of the entire atomic mass spectrum (∼7-250 m/z +). To demonstrate the utility of this approach, samples were collected and analyzed from a large, boreal river, and its surrounding tributaries. These samples provided us with a diversity of particle compositions and morphologies, while their interconnected nature allowed for an examination of the various nanogeochemical processes present in this system. To further expand on this effort, we combined this high-throughput technique with AF4-ICPMS, focusing on major carriers of trace elements. Using spICP-TOF-MS, Al, Si, and Fe were grouped into classes having all combinations of one or more of these elements. Particle-by-particle ICP-TOF-MS analysis found chemically heterogeneous populations, indicating the predominance of diverse mineralogy or heteroaggregates. The importance of suspended Fe and Mn for the speciation of Pb was observed by single particle ICP-TOF-MS and complemented by AF4-ICPMS analysis of dissolved organic matter and nanoparticulate Fe/Mn. Our study exploits the combination of spICP-TOF-MS and AF4-ICP-MS for studying isotopic and elemental ratios (mineralogy) of individual nanoparticles, which opens the door to further explore the mechanisms of colloid facilitated transport of trace elements.

11.
Environ Toxicol Chem ; 41(5): 1304-1310, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35156224

RESUMO

Although the concept and modeling of metal bioavailability and toxicity have been well developed based largely on laboratory experiments with standard test species, additional evidence is required to demonstrate their applicability for macroinvertebrates typically found in natural lotic ecosystems. We conducted 10-day stream mesocosm experiments to test the hypothesis that increased water hardness (in the present study, the calcium [Ca] concentration was increased by adding CaCl2 ) would mitigate the effects of copper (Cu) on natural benthic macroinvertebrate communities. Exposure of macroinvertebrate communities to 25 µg/L Cu for 10 days in stream mesocosm experiments resulted in significant decreases in total abundance, in number of taxa, and in abundance of many macroinvertebrate taxa. However, the addition of Ca to stream mesocosms and the associated increase in water hardness up to 250 mg/L CaCO3 did not mitigate these effects of Cu on macroinvertebrate communities. The results showed that the hardness-based water quality criteria for Cu of the US Environmental Protection Agency were not protective under the conditions of relatively high hardness, low alkalinity, and circumneutral pH. In contrast, the water quality criteria based on the biotic ligand model predicted little protective effects of Ca on Cu toxicity, which is consistent with our results. Additional experiments are required to understand the influence of modifying factors on the toxicity of metals to macroinvertebrate communities. Environ Toxicol Chem 2022;41:1304-1310. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Rios , Poluentes Químicos da Água , Cálcio , Cobre/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade
12.
NanoImpact ; 172020.
Artigo em Inglês | MEDLINE | ID: mdl-33029568

RESUMO

Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.

13.
Sci Total Environ ; 743: 140845, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758854

RESUMO

Detection of metal nanoparticles (NPs) in the environment is an analytical challenge of interest due to increasing use of nanomaterials in consumer and industrial products. Detecting NPs associated with human activities is affected by both the magnitude and variation in background concentrations of natural NPs. In this work, we investigated the potential release of titanium dioxide (TiO2) NPs from sunscreen in three recreational rivers, with a time-intensive sampling regime on one river, in order to determine the range and variability of natural, background titania (Ti). Conventional ICP analysis for total metal concentrations, single particle ICP-MS for NP concentrations, and electron microscopy aided in assessing mineralogical morphology and composition. Oxybenzone, a widely-used organic sunscreen, was measured and used as a surrogate for the intensity of recreational activity in the water. Statistically significant increases in Ti concentrations were observed in Clear Creek, CO during one recreation period, but the significance of other instances of recreation-associated Ti increases was unclear, in part due to storm impacts on the natural suspended sediment load of the stream. A comparison of three recreational rivers showed increases in both Ti mass concentrations and NP sizes occur during recreation in both Clear Creek, CO and the Salt River, AZ, but no detectable changes in the Truckee River, NV. However, size distributions were variable in background samples, which make the significance of differences observed during recreation unclear. These results underline that the release of engineered nanoparticles to a natural system cannot be detected without a well-defined background, including measures of its variability during the study period.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água/análise , Humanos , Rios , Protetores Solares/análise , Titânio/análise
14.
Environ Sci Technol ; 53(19): 11214-11222, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31448904

RESUMO

Acid mine drainage (AMD) produces nanoparticulate Fe oxides and sorbed toxic metals, such as Cu and Zn. As an indirect product of human activity, these Fe oxides can be classified as incidental nanoparticles (INPs) and their colloidal aggregates. Research in nanoparticle fate and transport has advanced with the development of single particle inductively coupled plasma-mass spectrometry (spICP-MS), but AMD INPs have received little attention. We examined the characteristics and abundance of Fe oxide INPs in an AMD-impacted stream over the first 6 months of remediation. Fe and Cu INP concentrations were approximately 107 and 105 particles mL-1, before and after treatment, respectively. Overall, ∼4 Cu-containing INPs were counted for every 100 Fe-containing INPs. We also studied surface chemistry changes during the treatment period using hematite, a model Fe INP, suspended in filtered field waters. Changes in zeta potential and INP size, measured by dynamic light scattering, support that the contaminated stream chemistry (low pH, high ionic strength) promoted rapid aggregation while improved water quality favored stability. However, the water chemistry and INP stability during snowmelt were additionally impacted by electrolyte dilution, the addition of dissolved organic matter, and physical scouring. By linking field measurements to laboratory experiments, this work explores the effects of surface chemistry on AMD-generated INP behavior before and during remediation in a hydrologically dynamic alpine stream. To our knowledge, this is the first investigation of remediation effects on AMD INPs and the first use of spICP-MS as a technique to measure them.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Compostos Férricos , Mineração , Rios
15.
Science ; 363(6434)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923195

RESUMO

Nanomaterials are critical components in the Earth system's past, present, and future characteristics and behavior. They have been present since Earth's origin in great abundance. Life, from the earliest cells to modern humans, has evolved in intimate association with naturally occurring nanomaterials. This synergy began to shift considerably with human industrialization. Particularly since the Industrial Revolution some two-and-a-half centuries ago, incidental nanomaterials (produced unintentionally by human activity) have been continuously produced and distributed worldwide. In some areas, they now rival the amount of naturally occurring nanomaterials. In the past half-century, engineered nanomaterials have been produced in very small amounts relative to the other two types of nanomaterials, but still in large enough quantities to make them a consequential component of the planet. All nanomaterials, regardless of their origin, have distinct chemical and physical properties throughout their size range, clearly setting them apart from their macroscopic equivalents and necessitating careful study. Following major advances in experimental, computational, analytical, and field approaches, it is becoming possible to better assess and understand all types and origins of nanomaterials in the Earth system. It is also now possible to frame their immediate and long-term impact on environmental and human health at local, regional, and global scales.

16.
Sci Total Environ ; 668: 234-244, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852200

RESUMO

Commercially available lumber, pressure-treated with micronized copper azole (MCA), has largely replaced other inorganic biocides for residential wood treatment in the USA, yet little is known about how different outdoor environmental conditions impact the release of ionic, nano-scale, or larger (micron-scale) copper from this product. Therefore, we weathered pressure treated lumber for 18 months in five different climates across the continental United States. Copper release was quantified every month and local weather conditions were recorded continuously to determine the extent to which local climate regulated the release of copper from this nano-enabled product during its use phase. Two distinct release trends were observed: In cooler, wetter climates release occurred primarily during the first few months of weathering, as the result of copper leaching from surface/near-surface areas. In warmer, drier climates, less copper was initially released due to limited precipitation. However, as the wood dried and cracked, the exposed copper-bearing surface area increased, leading to increased copper release later in the product lifetime. Single-particle-ICP-MS results from laboratory prepared MCA-wood leachate solutions indicated that a) the predominant form of released copper passed through a filter smaller than 0.45 micrometers and b) released particles were largely resistant to dissolution over the course of 6 wks. Toxicity Characteristic Leaching Procedure (TCLP) testing was conducted on nonweathered and weathered MCA-wood samples to simulate landfill conditions during their end-of-life (EoL) phase and revealed that MCA wood released <10% of initially embedded copper. Findings from this study provide data necessary to complete a more comprehensive evaluation of the environmental and human health impacts introduced through release of copper from pressure treated lumber utilizing life cycle assessment (LCA).

17.
Nat Nanotechnol ; 13(8): 661-669, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30082812

RESUMO

Natural nanoparticles (NNPs) in rivers, lakes, oceans and ground water predate humans, but engineered nanoparticles (ENPs) are emerging as potential pollutants due to increasing regulatory and public perception concerns. This Review contrasts the sources, composition and potential occurrence of NNPs (for example, two-dimensional clays, multifunctional viruses and metal oxides) and ENPs in surface water, after centralized drinking water treatment, and in tap water. While analytical detection challenges exist, ENPs are currently orders of magnitude less common than NNPs in waters that flow into drinking water treatment plants. Because such plants are designed to remove small-sized NNPs, they are also very good at removing ENPs. Consequently, ENP concentrations in tap water are extremely low and pose low risk during ingestion. However, after leaving drinking water treatment plants, corrosion by-products released from distribution pipes or in-home premise plumbing can release incidental nanoparticles into tap water. The occurrence and toxicity of incidental nanoparticles, rather than ENPs, should therefore be the focus of future research.


Assuntos
Água Potável/análise , Nanopartículas/análise , Poluentes da Água/análise , Purificação da Água/métodos , Lagos/análise , Tamanho da Partícula , Rios/química
18.
Sci Total Environ ; 645: 229-234, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029106

RESUMO

Hydraulic fracturing wastewaters (HFWWs) contain synthetic organic components and metal ions derived from the formation waters. The risk of spills of HFWW that could impact soil quality and water resources is of great concern. The ability of synthetic components, such as surfactants, in HFWW to be transported through soil and to mobilize metals in soil was examined using column experiments. A spill of HFWW was simulated in bench scale soil column experiments that used an agricultural soil and simulated seven 10-year rain events representing a total of one year's worth of precipitation for Weld County, Colorado. Although no surfactants or their transformation products were found in leachate samples, copper, lead, and iron were mobilized at environmentally relevant concentrations. In general, after the initial spill event, metal concentrations increased until the fourth rain event before decreasing. Results from this study suggest that transport of metals was caused by the high concentrations of salts present in HFWW. This is the first study utilizing authentic HFWWs to investigate the transport of surfactants and their effect on metal mobilization. Importantly, a significant decrease in the water infiltration rate of the soil was observed, leading to the point where water was unable to percolate through due to increasing salinity, potentially having a severe impact on crop production.

19.
Forensic Sci Int ; 288: e20-e25, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29807755

RESUMO

Single particle inductively coupled plasma mass spectrometry (spICP-MS) was investigated as a screening-level technique for the analysis and characterization of inorganic gunshot residue (IGSR) nanoparticles. spICP-MS works with undigested samples whereby nanoparticles (NPs) in a suspension are individually atomized and ionized as they reach the plasma, each resulting in a pulse of analyte ions that can be quantified. The method is rapid, and signals from hundreds of NPs can be collected in 1-2min per sample. The technique is quantitative for NP mass and number concentration when only one element (single element mode) is measured using a quadrupole MS. Likewise, a qualitative elemental fingerprint can be obtained for individual NPs when peak-hopping between two elements (dual element mode). For this proof of concept study, each shooter's hand was sampled with ultrapure water or swab to obtain NPs suspensions. Measurements of antimony, barium, and lead were performed using both analysis modes. With no sample preparation and fully automated sample introduction, it is possible to analyze more than 100 samples in a day. Results show that this technique opens a new perspective for future research on GSR sample identification and characterization and can complement SEM/EDX analysis.

20.
Environ Sci Technol ; 52(12): 7072-7080, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29812923

RESUMO

Assessing benthic invertebrate community responses to multiple stressors is necessary to improve the success of restoration and biomonitoring projects. Results of mesocosm and field experiments were integrated to predict how benthic macroinvertebrate communities would recover following the removal of acid mine drainage from the North Fork of Clear Creek (NFCC), a U.S. EPA Superfund site in Colorado, USA. We transferred reference and metal-contaminated sediment to an upstream reference site where colonization by benthic macroinvertebrates was measured over 30 days. Additionally, a mesocosm experiment was performed to test the hypothesis that patches of metal-contaminated substrate impede recolonization downstream. Abundance in all treatments increased over time during field experiments; however, colonization was slower in treatments with metal-contaminated fine sediment. Community assemblages in treatments with metal-contaminated fine substrate were significantly different from other treatments. Patterns in the mesocosm study were consistent with results of the field experiment and showed greater separation in community structure between streams with metal-contaminated sediments and reference-coarse habitats; however, biological traits also helped explain downstream colonization. This study suggests that after water quality improvements at NFCC, fine-sediment deposition will likely reduce recovery potential for some taxa; however highly mobile taxa that avoid patches of contaminated habitats can recover quickly.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Animais , Colorado , Monitoramento Ambiental , Invertebrados , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...