Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488057

RESUMO

Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated 'omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage-regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined. Notably, out of the 30 chromosomes in the monarch genome, 12 of them, plus the fraction of the chromosome Z that corresponds to the ancestral Z in other Lepidoptera, were found enriched for developmental stage-regulated genes. These two levels of nonrandom gene organization are not independent as enriched chromosomes for developmental stage-regulated genes tend to harbor disproportionately large clusters of these genes. Further, although paralogous genes were overrepresented in gene clusters, their presence is not enough to explain two-thirds of the documented cases of whole-chromosome enrichment. The composition of the largest clusters often included paralogs from more than one multigene family as well as unrelated single-copy genes. Our results reveal intriguing patterns at the whole-chromosome scale in D. plexippus while shedding light on the interplay between gene expression and chromosome organization beyond Diptera and Hymenoptera.


Assuntos
Borboletas , Animais , Feminino , Masculino , Borboletas/genética , Cromossomos/genética , Genoma , Larva/genética , Transcriptoma
2.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38258319

RESUMO

Dissecting the molecular basis of adaptation remains elusive despite our ability to sequence genomes and transcriptomes. At present, most genomic research on selection focusses on signatures of selective sweeps in patterns of heterozygosity. Other research has studied changes in patterns of gene expression in evolving populations but has not usually identified the genetic changes causing these shifts in expression. Here we attempt to go beyond these approaches by using machine learning tools to explore interactions between the genome, transcriptome, and life-history phenotypes in two groups of 10 experimentally evolved Drosophila populations subjected to selection for opposing life history patterns. Our findings indicate that genomic and transcriptomic data have comparable power for predicting phenotypic characters. Looking at the relationships between the genome and the transcriptome, we find that the expression of individual transcripts is influenced by many sites across the genome that are differentiated between the two types of populations. We find that single-nucleotide polymorphisms (SNPs), transposable elements, and indels are powerful predictors of gene expression. Collectively, our results suggest that the genomic architecture of adaptation is highly polygenic with extensive pleiotropy.


Assuntos
Drosophila , Genômica , Animais , Drosophila/genética , Perfilação da Expressão Gênica , Heterozigoto , Mutação INDEL
3.
Commun Biol ; 6(1): 1069, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864070

RESUMO

How recently originated gene copies become stable genomic components remains uncertain as high sequence similarity of young duplicates precludes their functional characterization. The tandem multigene family Sdic is specific to Drosophila melanogaster and has been annotated across multiple reference-quality genome assemblies. Here we show the existence of a positive correlation between Sdic copy number and total expression, plus vast intrastrain differences in mRNA abundance among paralogs, using RNA-sequencing from testis of four strains with variable paralog composition. Single cell and nucleus RNA-sequencing data expose paralog expression differentiation in meiotic cell types within testis from third instar larva and adults. Additional RNA-sequencing across synthetic strains only differing in their Y chromosomes reveal a tissue-dependent trans-regulatory effect on Sdic: upregulation in testis and downregulation in male accessory gland. By leveraging paralog-specific expression information from tissue- and cell-specific data, our results elucidate the intraspecific functional diversification of a recently expanded tandem gene family.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Espermatogênese/genética , Testículo/metabolismo , RNA/metabolismo , Dineínas do Axonema/metabolismo
4.
Mol Ecol ; 32(13): 3605-3623, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000122

RESUMO

Early lineage diversification is central to understand what mutational events drive species divergence. Particularly, gene misregulation in interspecific hybrids can inform about what genes and pathways underlie hybrid dysfunction. In Drosophila hybrids, how regulatory evolution impacts different reproductive tissues remains understudied. Here, we generate a new genome assembly and annotation in Drosophila willistoni and analyse the patterns of transcriptome divergence between two allopatrically evolved D. willistoni subspecies, their male sterile and female fertile hybrid progeny across testis, male accessory gland, and ovary. Patterns of transcriptome divergence and modes of regulatory evolution were tissue-specific. Despite no indication for cell-type differences in hybrid testis, this tissue exhibited the largest magnitude of expression differentiation between subspecies and between parentals and hybrids. No evidence for anomalous dosage compensation in hybrid male tissues was detected nor was a differential role for the neo- and the ancestral arms of the D. willistoni X chromosome. Compared to the autosomes, the X chromosome appeared enriched for transgressively expressed genes in testis despite being the least differentiated in expression between subspecies. Evidence for fine genome clustering of transgressively expressed genes suggests a role of chromatin structure on hybrid gene misregulation. Lastly, transgressively expressed genes in the testis of the sterile male progeny were enriched for GO terms not typically associated with sperm function, instead hinting at anomalous development of the reproductive tissue. Our thorough tissue-level portrait of transcriptome differentiation between recently diverged D. willistoni subspecies and their hybrids provides a more nuanced view of early regulatory changes during speciation.


Assuntos
Drosophila , Sêmen , Animais , Masculino , Feminino , Drosophila/genética , Cromossomo X , Diferenciação Celular , Transcriptoma/genética , Hibridização Genética
7.
Proc Biol Sci ; 289(1967): 20212183, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35042416

RESUMO

How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.


Assuntos
Borboletas , Dípteros , Lepidópteros , Animais , Borboletas/genética , Cromossomos/genética , Dípteros/genética , Drosophila melanogaster/genética , Evolução Molecular , Filogenia , Distribuição Aleatória
8.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432020

RESUMO

The magnitude and functional patterns of intraspecific transcriptional variation in the anophelines, including those of sex-biased genes underlying sex-specific traits relevant for malaria transmission, remain understudied. As a result, how changes in expression levels drive adaptation in these species is poorly understood. We sequenced the female, male, and larval transcriptomes of three populations of Anopheles arabiensis from Burkina Faso. One-third of the genes were differentially expressed between populations, often involving insecticide resistance-related genes in a sample type-specific manner, and with the females showing the largest number of differentially expressed genes. At the genomic level, the X chromosome appears depleted of differentially expressed genes compared with the autosomes, chromosomes harboring inversions do not exhibit evidence for enrichment of such genes, and genes that are top contributors to functional enrichment patterns of population differentiation tend to be clustered in the genome. Further, the magnitude of variation for the sex expression ratio across populations did not substantially differ between male- and female-biased genes, except for some populations in which male-limited expressed genes showed more variation than their female counterparts. In fact, female-biased genes exhibited a larger level of interpopulation variation than male-biased genes, both when assayed in males and females. Beyond uncovering the extensive adaptive potential of transcriptional variation in An. Arabiensis, our findings suggest that the evolutionary rate of changes in expression levels on the X chromosome exceeds that on the autosomes, while pointing to female-biased genes as the most variable component of the An. Arabiensis transcriptome.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Feminino , Resistência a Inseticidas/genética , Malária/genética , Masculino , Transcriptoma
9.
Evolution ; 75(8): 2102-2113, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184267

RESUMO

Seminal fluid proteins (SFPs) are a group of reproductive proteins that are among the most evolutionarily divergent known. As SFPs can impact male and female fitness, these proteins have been proposed to evolve under postcopulatory sexual selection (PCSS). However, the fast change of the SFPs can also result from nonadaptive evolution, and the extent to which selective constraints prevent SFPs rapid evolution remains unknown. Using intra- and interspecific sequence information, along with genomics and functional data, we examine the molecular evolution of approximately 300 SFPs in Drosophila. We found that 50-57% of the SFP genes, depending on the population examined, are evolving under relaxed selection. Only 7-12% showed evidence of positive selection, with no evidence supporting other forms of PCSS, and 35-37% of the SFP genes were selectively constrained. Further, despite associations of positive selection with gene location on the X chromosome and protease activity, the analysis of additional genomic and functional features revealed their lack of influence on SFPs evolving under positive selection. Our results highlight a lack of sufficient evidence to claim that most SFPs are driven to evolve rapidly by PCSS while identifying genomic and functional attributes that influence different modes of SFPs evolution.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Masculino , Reprodução , Proteínas de Plasma Seminal/genética
10.
Commun Biol ; 4(1): 791, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172835

RESUMO

A detailed knowledge of gene function in the monarch butterfly is still lacking. Here we generate a genome assembly from a Mexican nonmigratory population and used RNA-seq data from 14 biological samples for gene annotation and to construct an atlas portraying the breadth of gene expression during most of the monarch life cycle. Two thirds of the genes show expression changes, with long noncoding RNAs being particularly finely regulated during adulthood, and male-biased expression being four times more common than female-biased. The two portions of the monarch heterochromosome Z, one ancestral to the Lepidoptera and the other resulting from a chromosomal fusion, display distinct association with sex-biased expression, reflecting sample-dependent incompleteness or absence of dosage compensation in the ancestral but not the novel portion of the Z. This study presents extended genomic and transcriptomic resources that will facilitate a better understanding of the monarch's adaptation to a changing environment.


Assuntos
Borboletas/genética , Mecanismo Genético de Compensação de Dose , Transcriptoma , Animais , Feminino , Genoma , Masculino , RNA Longo não Codificante/fisiologia
11.
Mol Biol Evol ; 37(9): 2584-2600, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359138

RESUMO

Gene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition. We scrutinized Sdic in 20 geographically diverse populations using reference-quality genome assemblies, read-depth methodologies, and qPCR, finding that ∼90% of the individuals harbor 3-7 copies as well as evidence of population differentiation. In strains with reliable gene annotations, copy number variation (CNV) and differential transposable element insertions distinguish one structurally distinct version of the Sdic region per strain. All 31 annotated copies featured protein-coding potential and, based on the protein variant encoded, were categorized into 13 paratypes differing in their 3' ends, with 3-5 paratypes coexisting in any strain examined. Despite widespread gene conversion, the only copy present in all strains has functionally diverged at both coding and regulatory levels under positive selection. Contrary to artificial tandem duplications of the Sdic region that resulted in increased male expression, CNV in cosmopolitan strains did not correlate with expression levels, likely as a result of differential genome modifier composition. Duplicating the region did not enhance sperm competitiveness, suggesting a fitness cost at high expression levels or a plateau effect. Beyond facilitating a minimally optimal expression level, Sdic CNV acts as a catalyst of protein and regulatory diversity, showcasing a possible evolutionary path recently formed tandem multigene families can follow toward long-term consolidation in eukaryotic genomes.


Assuntos
Dineínas do Axonema/genética , Evolução Biológica , Variações do Número de Cópias de DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Família Multigênica , Animais , Feminino , Conversão Gênica , Masculino , Seleção Genética , Espermatozoides/fisiologia
12.
Front Genet ; 10: 820, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572439

RESUMO

Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male-male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.

13.
Biogerontology ; 20(5): 699-710, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31317291

RESUMO

The genomic basis of ageing still remains unknown despite being a topic of study for many years. Here, we present data from 20 experimentally evolved laboratory populations of Drosophila melanogaster that have undergone two different life-history selection regimes. One set of ten populations demonstrates early ageing whereas the other set of ten populations shows postponed ageing. Additionally, both types of populations consist of five long standing populations and five recently derived populations. Our primary goal was to determine which genes exhibit changes in expression levels by comparing the female transcriptome of the two population sets at two different time points. Using three different sets of increasingly restrictive criteria, we found that 2.1-15.7% (82-629 genes) of the expressed genes are associated with differential ageing between population sets. Conversely, a comparison of recently derived populations to long-standing populations reveals little to no transcriptome differentiation, suggesting that the recent selection regime has had a larger impact on the transcriptome than its more distant evolutionary history. In addition, we found very little evidence for significant enrichment for functional attributes regardless of the set of criteria used. Relative to previous ageing studies, we find little overlap with other lists of aging related genes. The disparity between our results and previously published results is likely due to the high replication used in this study coupled with our use of highly differentiated populations. Our results reinforce the notion that the use of genomic, transcriptomic, and phenotypic data to uncover the genetic basis of a complex trait like ageing can benefit from experimental designs that use highly replicated, experimentally-evolved populations.


Assuntos
Envelhecimento/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Transcriptoma/genética , Adaptação Fisiológica , Animais , Evolução Biológica , Drosophila , Feminino , Perfilação da Expressão Gênica/métodos , Modelos Teóricos , Seleção Genética
14.
Evolution ; 72(2): 399-403, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315521

RESUMO

Sperm competition is a postcopulatory sexual selection mechanism in species in which females mate with multiple males. Despite its evolutionary relevance in shaping male traits, the genetic mechanisms underlying sperm competition are poorly understood. A recently originated multigene family specific to Drosophila melanogaster, Sdic, is important for the outcome of sperm competition in doubly mated females, although the mechanistic nature of this phenotype remained unresolved. Here, we compared doubly mated females, second mated to either Sdic knockout or nonknockout males, and directly visualize sperm dynamics in the female reproductive tract. We found that a less effective removal of first-to-mate male's sperm within the female's sperm storage organs is consistent with a reduced sperm competitive ability of the Sdic knockout males. Our results highlight the role young genes can play in driving the evolution of sperm competition.


Assuntos
Dineínas do Axonema/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Preferência de Acasalamento Animal , Espermatozoides/fisiologia , Animais , Feminino , Técnicas In Vitro , Masculino , Família Multigênica
15.
Mol Biol Evol ; 34(1): 51-65, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702774

RESUMO

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection.


Assuntos
Drosophila melanogaster/genética , Sequências de Repetição em Tandem , Sequência de Aminoácidos , Animais , Dineínas do Axonema/genética , Evolução Biológica , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Conversão Gênica , Duplicação Gênica , Genes de Insetos , Variação Genética , Masculino , Família Multigênica , Filogenia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
16.
Fly (Austin) ; 10(4): 162-71, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27268100

RESUMO

Speciation can occur through the presence of reproductive isolation barriers that impede mating, restrict cross-fertilization, or render inviable/sterile hybrid progeny. The D. willistoni subgroup is ideally suited for studies of speciation, with examples of both allopatry and sympatry, a range of isolation barriers, and the availability of one species complete genome sequence to facilitate genetic studies of divergence. D. w. willistoni has the largest geographic distribution among members of the Drosophila willistoni subgroup, spanning from Argentina to the southern United States, including the Caribbean islands. A subspecies of D. w. willistoni, D. w. quechua, is geographically separated by the Andes mountain range and has evolved unidirectional sterility, in that only male offspring of D. w. quechua females × D. w. willistoni males are sterile. Whether D. w. willistoni flies residing east of the Andes belong to one or more D. willistoni subspecies remains unresolved. Here we perform fecundity assays and show that F1 hybrid males produced from crosses between different strains found in Central America, North America, and northern Caribbean islands are reproductively isolated from South American and southern Caribbean island strains as a result of unidirectional hybrid male sterility. Our results show the existence of a reproductive isolation barrier between the northern and southern strains and suggest a subdivision of the previously identified D. willistoni willistoni species into 2 new subspecies.


Assuntos
Drosophila/genética , Drosophila/fisiologia , Especiação Genética , Animais , Região do Caribe , América Central , Drosophila/classificação , Feminino , Masculino , Isolamento Reprodutivo , América do Sul
17.
Nat Commun ; 6: 6509, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25739651

RESUMO

Genome clustering of homeobox genes is often thought to reflect arrangements of tandem gene duplicates maintained by advantageous coordinated gene regulation. Here we analyse the chromosomal organization of the NK homeobox genes, presumed to be part of a single cluster in the Bilaterian ancestor, across 20 arthropods. We find that the ProtoNK cluster was extensively fragmented in some lineages, showing that NK clustering in Drosophila species does not reflect selectively maintained gene arrangements. More importantly, the arrangement of NK and neighbouring genes across the phylogeny supports that, in two instances within the Drosophila genus, some cluster remnants became reunited via large-scale chromosomal rearrangements. Simulated scenarios of chromosome evolution indicate that these reunion events are unlikely unless the genome neighbourhoods harbouring the participating genes tend to colocalize in the nucleus. Our results underscore how mechanisms other than tandem gene duplication can result in paralogous gene clustering during genome evolution.


Assuntos
Drosophila/genética , Evolução Molecular , Regulação da Expressão Gênica/genética , Genes Homeobox/genética , Família Multigênica/genética , Translocação Genética/fisiologia , Sequência de Aminoácidos , Animais , Artrópodes/genética , Mapeamento Cromossômico , Biologia Computacional , Duplicação Gênica/genética , Hibridização In Situ , Funções Verossimilhança , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie , Translocação Genética/genética
18.
Mol Biol Evol ; 31(10): 2557-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24951729

RESUMO

MicroRNAs (miRNAs) are endogenous RNA molecules that regulate gene expression posttranscriptionally. To date, the emergence of miRNAs and their patterns of sequence evolution have been analyzed in great detail. However, the extent to which miRNA expression levels have evolved over time, the role different evolutionary forces play in shaping these changes, and whether this variation in miRNA expression can reveal the interplay between miRNAs and mRNAs remain poorly understood. This is especially true for miRNA expressed during key developmental transitions. Here, we assayed miRNA expression levels immediately before (≥18BPF [18 h before puparium formation]) and after (PF) the increase in the hormone ecdysone responsible for triggering metamorphosis. We did so in four strains of Drosophila melanogaster and two closely related species. In contrast to their sequence conservation, approximately 25% of miRNAs analyzed showed significant within-species variation in male expression levels at ≥18BPF and/or PF. Additionally, approximately 33% showed modifications in their pattern of expression bias between developmental timepoints. A separate analysis of the ≥18BPF and PF stages revealed that changes in miRNA abundance accumulate linearly over evolutionary time at PF but not at ≥18BPF. Importantly, ≥18BPF-enriched miRNAs showed the greatest variation in expression levels both within and between species, so are the less likely to evolve under stabilizing selection. Functional attributes, such as expression ubiquity, appeared more tightly associated with lower levels of miRNA expression polymorphism at PF than at ≥18BPF. Furthermore, ≥18BPF- and PF-enriched miRNAs showed opposite patterns of covariation in expression with mRNAs, which denoted the type of regulatory relationship between miRNAs and mRNAs. Collectively, our results show contrasting patterns of functional divergence associated with miRNA expression levels during Drosophila ontogeny.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica , MicroRNAs/genética , Animais , Sequência Conservada , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Masculino , Dados de Sequência Molecular , Filogenia , Caracteres Sexuais
19.
J Vis Exp ; (78): e50547, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23995693

RESUMO

Competition among conspecific males for fertilizing the ova is one of the mechanisms of sexual selection, i.e. selection that operates on maximizing the number of successful mating events rather than on maximizing survival and viability. Sperm competition represents the competition between males after copulating with the same female, in which their sperm are coincidental in time and space. This phenomenon has been reported in multiple species of plants and animals. For example, wild-caught D. melanogaster females usually contain sperm from 2-3 males. The sperm are stored in specialized organs with limited storage capacity, which might lead to the direct competition of the sperm from different males. Comparing sperm competitive ability of different males of interest (experimental male types) has been performed through controlled double-mating experiments in the laboratory. Briefly, a single female is exposed to two different males consecutively, one experimental male and one cross-mating reference male. The same mating scheme is then followed using other experimental male types thus facilitating the indirect comparison of the competitive ability of their sperm through a common reference. The fraction of individuals fathered by the experimental and reference males is identified using markers, which allows one to estimate sperm competitive ability using simple mathematical expressions. In addition, sperm competitive ability can be estimated in two different scenarios depending on whether the experimental male is second or first to mate (offense and defense assay, respectively), which is assumed to be reflective of different competence attributes. Here, we describe an approach that helps to interrogate the role of different genetic factors that putatively underlie the phenomenon of sperm competitive ability in D. melanogaster.


Assuntos
Drosophila melanogaster/fisiologia , Espermatozoides/fisiologia , Animais , Drosophila melanogaster/genética , Feminino , Masculino
20.
Commun Integr Biol ; 5(5): 462-5, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23181161

RESUMO

In many animal species, traits associated with male fitness evolve rapidly. Intersexual conflict and male-male competition have been suggested to drive this rapid evolution. These fast evolutionary dynamics result in elevated rates of amino acid replacement and modification of gene expression attributes. Gene acquisition is another mechanism that might contribute to fitness differences among males. However, empirical evidence of fitness effects associated with newly evolved genes is scarce. The Sdic multigene family originated within the last 5.4 myr in the lineage that leads to D. melanogaster and encodes a sperm dynein intermediate chain presumably involved in sperm motility. The silencing of the Sdic multigene family, followed by the screening of relevant phenotypes, supports the role of the Sdic multigene family in sperm competition. The case of the Sdic multigene family illustrates the flexibility of genetic networks in incorporating lineage-specific gene novelties that can trigger an evolutionary arms race between males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...