Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 8(2): 251-255, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28197321

RESUMO

Lomibuvir (1) is a non-nucleoside, allosteric inhibitor of the hepatitis C virus NS5B polymerase with demonstrated clinical efficacy. Further development efforts within this class of inhibitor focused on improving the antiviral activity and physicochemical and pharmacokinetic properties. Recently, we reported the development of this series, leading to compound 2, a molecule with comparable potency and an improved physicochemical profile relative to 1. Further exploration of the amino amide-derived side chain led to a series of lactam derivatives, inspired by the X-ray crystal structure of related thiophene carboxylate inhibitors. This series, exemplified by 12f, provided 3-5-fold improvement in potency against HCV replication, as measured by replicon assays. The synthesis, structure-activity relationships, in vitro ADME characterization, and in vivo evaluation of this novel series are discussed.

2.
J Med Chem ; 59(13): 6293-302, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27366941

RESUMO

The hepatitis C viral proteins NS3/4A protease, NS5B polymerase, and NS5A are clinically validated targets for direct-acting antiviral therapies. The NS5B polymerase may be inhibited directly through the action of nucleosides or nucleotide analogues or allosterically at a number of well-defined sites. Herein we describe the further development of a series of thiophene carboxylate allosteric inhibitors of NS5B polymerase that act at the thumb pocket 2 site. Lomibuvir (1) is an allosteric HCV NS5B inhibitor that has demonstrated excellent antiviral activity and potential clinical utility in combination with other direct acting antiviral agents. Efforts to further explore and develop this series led to compound 23, a compound with comparable potency and improved physicochemical properties.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Tiofenos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Cicloexanóis/química , Cicloexanóis/farmacologia , Relação Dose-Resposta a Droga , Hepacivirus/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
3.
J Virol ; 89(1): 165-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320291

RESUMO

UNLABELLED: The precise role(s) and topological organization of different factors in the hepatitis C virus (HCV) RNA replication complex are not well understood. In order to elucidate the role of viral and host proteins in HCV replication, we have developed a novel in vitro replication system that utilizes a rolling-circle RNA template. Under close-to-physiological salt conditions, HCV NS5BΔ21, an RNA-dependent RNA polymerase, has poor affinity for the RNA template. Human replication protein A (RPA) and HCV NS5A recruit NS5BΔ21 to the template. Subsequently, NS3 is recruited to the replication complex by NS5BΔ21, resulting in RNA synthesis stimulation by helicase. Both RPA and NS5A(S25-C447), but not NS5A(S25-K215), enabled the NS5BΔ21-NS3 helicase complex to be stably associated with the template and synthesize RNA product in a highly processive manner in vitro. This new in vitro HCV replication system is a useful tool that may facilitate the study of other replication factors and aid in the discovery of novel inhibitors of HCV replication. IMPORTANCE: The molecular mechanism of hepatitis C virus (HCV) replication is not fully understood, but viral and host proteins collaborate in this process. Using a rolling-circle RNA template, we have reconstituted an in vitro HCV replication system that allows us to interrogate the role of viral and host proteins in HCV replication and delineate the molecular interactions. We showed that HCV NS5A(S25-C447) and cellular replication protein A (RPA) functionally cooperate as a processivity factor to stimulate HCV replication by HCV NS5BΔ21 polymerase and NS3 helicase. This system paves the way to test other proteins and may be used as an assay for discovery of HCV inhibitors.


Assuntos
Hepacivirus/enzimologia , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Proteína de Replicação A/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , RNA Viral/metabolismo , Deleção de Sequência , Proteínas não Estruturais Virais/genética
4.
Antimicrob Agents Chemother ; 58(9): 5456-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24982088

RESUMO

VX-222, a thiophene-2-carboxylic acid derivative, is a selective nonnucleoside inhibitor of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. In phase 1 and 2 clinical studies, VX-222 demonstrated effective antiviral efficacy, with substantial reductions in plasma HCV RNA in patients chronically infected with genotype 1 HCV. To characterize the potential for selection of VX-222-resistant variants in HCV-infected patients, the HCV NS5B gene was sequenced at baseline and during and after 3 days of VX-222 dosing (monotherapy) in a phase 1 study. Variants with the substitutions L419C/I/M/P/S/V, R422K, M423I/T/V, I482L/N/T, A486S/T/V, and V494A were selected during VX-222 dosing, and their levels declined over time after the end of dosing. Phenotypic analysis of these variants was conducted using HCV replicons carrying site-directed mutations. Of the 17 variants, 14 showed reduced susceptibility to VX-222 compared with the wild type, with the L419C/S and R422K variants having higher levels of resistance (>200-fold) than the rest of the variants (6.8- to 76-fold). The M423I and A486S variants remained susceptible to VX-222. The 50% effective concentration (EC50) for the L419P variant could not be obtained due to the poor replication of this replicon. The majority of the variants (15/17) were less fit than the wild type. A subset of the variants, predominately the L419S and R422K variants, were observed when the efficacy and safety of VX-222- and telaprevir-based regimens given for 12 weeks were investigated in genotype 1 HCV-infected patients in a phase 2 study. The NS3 and NS5B variants selected during the dual combination therapy showed reduced susceptibility to both telaprevir and VX-222 and had a lower replication capacity than the wild type. The phase 1b study has the ClinicalTrials.gov identifier NCT00911963, and the phase 2a study has ClinicalTrials.gov identifier NCT01080222.


Assuntos
Antivirais/farmacologia , Cicloexanóis/farmacologia , Variação Genética/efeitos dos fármacos , Variação Genética/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Tiofenos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Sequência de Bases , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Genótipo , Hepatite C/tratamento farmacológico , Humanos , Dados de Sequência Molecular , Mutação/efeitos dos fármacos , Mutação/genética , Oligopeptídeos/farmacologia , Fenótipo , Replicon/efeitos dos fármacos , Replicon/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
5.
Antimicrob Agents Chemother ; 57(12): 6236-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100495

RESUMO

Telaprevir is a linear, peptidomimetic small molecule that inhibits hepatitis C virus (HCV) replication by specifically inhibiting the NS3·4A protease. In phase 3 clinical studies, telaprevir in combination with peginterferon and ribavirin (PR) significantly improved sustained virologic response (SVR) rates in genotype 1 chronic HCV-infected patients compared with PR alone. In patients who do not achieve SVR after treatment with telaprevir-based regimens, variants with mutations in the NS3·4A protease region have been observed. Such variants can contribute to drug resistance and limit the efficacy of treatment. To gain a better understanding of the viral resistance profile, we conducted phenotypic characterization of the variants using HCV replicons carrying site-directed mutations. The most frequently observed (significantly enriched) telaprevir-resistant variants, V36A/M, T54A/S, R155K/T, and A156S, conferred lower-level resistance (3- to 25-fold), whereas A156T and V36M+R155K conferred higher-level resistance (>25-fold) to telaprevir. Rarely observed (not significantly enriched) variants included V36I/L and I132V, which did not confer resistance to telaprevir; V36C/G, R155G/I/M/S, V36A+T54A, V36L+R155K, T54S+R155K, and R155T+D168N, which conferred lower-level resistance to telaprevir; and A156F/N/V, V36A+R155K/T, V36M+R155T, V36A/M+A156T, T54A+A156S, T54S+A156S/T, and V36M+T54S+R155K, which conferred higher-level resistance to telaprevir. All telaprevir-resistant variants remained fully sensitive to alpha interferon, ribavirin, and HCV NS5B nucleoside and nonnucleoside polymerase inhibitors. In general, the replication capacity of telaprevir-resistant variants was lower than that of the wild-type replicon.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Oligopeptídeos/farmacologia , Proteínas não Estruturais Virais/genética , Antivirais/farmacologia , Linhagem Celular , Hepacivirus/genética , Humanos , Concentração Inibidora 50 , Mutagênese Sítio-Dirigida , Inibidores de Proteases/farmacologia
6.
Antimicrob Agents Chemother ; 54(6): 2681-3, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20368394

RESUMO

We characterized a novel substitution conferring moderate resistance to telaprevir, a peptidomimetic inhibitor of hepatitis C virus protease. V36C conferred a 4.0-fold increase in the telaprevir 50% inhibitory concentration in an enzyme assay and a 9.5-fold increase in the replicon model. The replication capacity of a replicon harboring V36C was close to that of the wild-type protease. This case emphasizes the complexity of hepatitis C virus resistance to protease inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Oligopeptídeos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Substituição de Aminoácidos , Antivirais/química , Farmacorresistência Viral/genética , Variação Genética , Hepacivirus/enzimologia , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Técnicas In Vitro , Modelos Moleculares , Mimetismo Molecular , Oligopeptídeos/química , Inibidores de Serina Proteinase/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
7.
Proteins ; 71(3): 1519-38, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18300249

RESUMO

We demonstrate a new approach to the development of scoring functions through the formulation and parameterization of a new function, which can be used both for rapidly ranking the binding of ligands to proteins and for estimating relative aqueous molecular solubilities. The intent of this work is to introduce a new paradigm for creation of scoring functions, wherein we impose the following criteria upon the function: (1) simple; (2) intuitive; (3) requires no postparameterization tweaking; (4) can be applied (without reparameterization) to multiple target systems; and (5) can be rapidly evaluated for any potential ligand. Following these criteria, a new function, FURSMASA (function for rapid scoring using an MD-averaged grid and the accessible surface area) has been developed. Three novel features of the function include: (1) use of an MD-averaged potential energy grid for ligand-protein interactions, rather than a simple static grid; (2) inclusion of a term that depends on the change in the solvent-accessible surface area changes on an atomic (not molecular) basis; and (3) use of the recently derived predictive index (PI) target when optimizing the function, which focuses the function on its intended purpose of relative ranking. A genetic algorithm is used to optimize the function against test data sets that include ligands for the following proteins: IMPDH, p38, gyrase B, HIV-1, and TACE, as well as the Syracuse Research solubility database. We find that the function is predictive, and can simultaneously fit all the test data sets with cross-validated predictive indices ranging from 0.68 to 0.82. As a test of the ability of this function to predict binding for systems not in the training set, the resulting fitted FURSAMA function is then applied to 23 ligands of the COX-2 enzyme. Comparing the results for COX-2 against those obtained using a variety of well-known rapid scoring functions demonstrates that FURSMASA outperforms all of them in terms of the PI and correlation coefficient. We also find that the FURSAMA function is able to reliably predict the water solubility for 1032 compounds from the Syracuse Research solubility database with a cross-correlated PI of 0.84 and a correlation coefficient R(2) of 0.69. This prediction, which is based solely on a term derived from the atom-based solvent-accessible surface areas, compares favorably with the best prediction methods in the literature, most of which are more complex and/or require experimental data. Finally, as a rigorous test of the applicability to database screening, we apply FURSMASA to large active/decoy ligand databases for IMPDH (400 actives vs. 10,000 decoys), p38 (502 actives vs. 10,000 decoys), and HIV (787 actives vs. 10,000 decoys) used in earlier work to critically evaluate many popular scoring functions, and find that FURSMASA performs surprisingly well for IMPDH and HIV.


Assuntos
Simulação por Computador , Ligação Proteica , Projetos de Pesquisa , Solventes/química , Termodinâmica , Sítios de Ligação , Biologia Computacional/métodos , Ligação de Hidrogênio , Ligantes , Valor Preditivo dos Testes , Propriedades de Superfície
8.
Bioorg Med Chem Lett ; 18(1): 44-8, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18054488

RESUMO

A series of potent thiol-containing aryl sulfone TACE inhibitors were designed and synthesized. The SAR and MMP selectivity of the series were investigated. In particular, compound 8b showed excellent in vitro potency against the isolated enzyme and good selectivity over MMP-2, -7, -8, -9, and -13. The X-ray structure of 8b in complex with TACE was also obtained.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/farmacologia , Sulfonas/síntese química , Sulfonas/farmacologia , Proteína ADAM17 , Cristalografia por Raios X , Desenho de Fármacos , Isoenzimas/antagonistas & inibidores , Cinética , Metaloendopeptidases/antagonistas & inibidores , Modelos Moleculares , Inibidores de Proteases/química , Relação Estrutura-Atividade , Especificidade por Substrato , Compostos de Sulfidrila/química , Sulfonas/química
9.
Antimicrob Agents Chemother ; 52(1): 110-20, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17938182

RESUMO

In patients chronically infected with hepatitis C virus (HCV) strains of genotype 1, rapid and dramatic antiviral activity has been observed with telaprevir (VX-950), a highly selective and potent inhibitor of the HCV NS3-4A serine protease. HCV variants with substitutions in the NS3 protease domain were observed in some patients during telaprevir dosing. In this study, purified protease domain proteins and reconstituted HCV subgenomic replicons were used for phenotypic characterization of many of these substitutions. V36A/M or T54A substitutions conferred less than eightfold resistance to telaprevir. Variants with double substitutions at Val36 plus Thr54 had approximately 20-fold resistance to telaprevir, and variants with double substitutions at Val36 plus Arg155 or Ala156 had >40-fold resistance to telaprevir. An X-ray structure of the HCV strain H protease domain containing the V36M substitution in a cocomplex with an NS4A cofactor peptide was solved at a 2.4-A resolution. Except for the side chain of Met36, the V36M variant structure is identical to that of the wild-type apoenzyme. The in vitro replication capacity of most variants was significantly lower than that of the wild-type replicon in cells, which is consistent with the impaired in vivo fitness estimated from telaprevir-dosed patients. Finally, the sensitivity of these replicon variants to alpha interferon or ribavirin remained unchanged compared to that of the wild-type.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Variação Genética , Hepacivirus/efeitos dos fármacos , Oligopeptídeos/farmacologia , Proteínas não Estruturais Virais , Sequência de Aminoácidos , Substituição de Aminoácidos , Antivirais/uso terapêutico , Linhagem Celular , Cristalografia por Raios X , Hepacivirus/classificação , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oligopeptídeos/uso terapêutico , Fenótipo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
10.
J Biol Chem ; 282(31): 22619-28, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17556358

RESUMO

Telaprevir (VX-950) is a highly selective, potent inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease. It has demonstrated strong antiviral activity in patients chronically infected with genotype 1 HCV when dosed alone or in combination with peginterferon alfa-2a. Substitutions of Arg(155) of the HCV NS3 protease domain have been previously detected in HCV isolates from some patients during telaprevir dosing. In this study, Arg(155) was replaced with various residues in genotype 1a protease domain proteins and in genotype 1b HCV subgenomic replicons. Characterization of both the purified enzymes and reconstituted replicon cells demonstrated that substitutions of Arg(155) with these residues conferred low level resistance to telaprevir (<25-fold). An x-ray structure of genotype 1a HCV protease domain with the R155K mutation, in a complex with an NS4A co-factor peptide, was determined at a resolution of 2.5A. The crystal structure of the R155K protease is essentially identical to that of the wild-type apoenzyme (Protein Data Bank code 1A1R) except for the side chain of mutated residue 155. Telaprevir was docked into the x-ray structure of the R155K protease, and modeling analysis suggests that the P2 group of telaprevir loses several hydrophobic contacts with the Lys(155) side chain. It was demonstrated that replicon cells containing substitutions at NS3 protease residue 155 remain fully sensitive to interferon alpha or ribavirin. Finally, these variant replicons were shown to have reduced replication capacity compared with the wild-type HCV replicon in cells.


Assuntos
Antivirais/química , Arginina/química , Interferon-alfa/química , Oligopeptídeos/química , Polietilenoglicóis/química , Ribavirina/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Cristalografia por Raios X , Concentração Inibidora 50 , Interferon alfa-2 , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes
11.
Antimicrob Agents Chemother ; 50(3): 899-909, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16495249

RESUMO

VX-950 is a potent, selective, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3-4A serine protease, and it demonstrated excellent antiviral activity both in genotype 1b HCV replicon cells (50% inhibitory concentration [IC50] = 354 nM) and in human fetal hepatocytes infected with genotype 1a HCV-positive patient sera (IC50 = 280 nM). VX-950 forms a covalent but reversible complex with the genotype 1a HCV NS3-4A protease in a slow-on, slow-off process with a steady-state inhibition constant (K(i)*) of 7 nM. Dissociation of the covalent enzyme-inhibitor complex of VX-950 and genotype 1a HCV protease has a half-life of almost an hour. A >4-log10 reduction in the HCV RNA levels was observed after a 2-week incubation of replicon cells with VX-950, with no rebound of viral RNA observed after withdrawal of the inhibitor. In several animal species, VX-950 exhibits a favorable pharmacokinetic profile with high exposure in the liver. In a recently developed HCV protease mouse model, VX-950 showed excellent inhibition of HCV NS3-4A protease activity in the liver. Therefore, the overall preclinical profile of VX-950 supports its candidacy as a novel oral therapy against hepatitis C.


Assuntos
Hepacivirus/enzimologia , Oligopeptídeos/farmacologia , Oligopeptídeos/farmacocinética , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Sítios de Ligação , Disponibilidade Biológica , Linhagem Celular , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos SCID , Oligopeptídeos/administração & dosagem , RNA Viral/fisiologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Replicon/fisiologia , Inibidores de Serina Proteinase/administração & dosagem , Especificidade por Substrato
12.
Nat Rev Drug Discov ; 4(10): 845-53, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16184083

RESUMO

Although there has been considerable progress in the development of antiviral agents in recent years, there is still a pressing need for new drugs both to improve on the properties of existing agents and to combat the problem of viral resistance. Helicases, both viral and human, have recently emerged as novel targets for the treatment of viral infections. Here, we discuss the role of these enzymes, factors affecting their potential as drug targets and progress in the development of agents that inhibit their activity using the hepatitis C virus-encoded helicase NS3 and the cellular helicase DDX3 adopted for use by HIV-1 as examples.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , RNA Helicases/efeitos dos fármacos , RNA Viral/efeitos dos fármacos , Humanos , RNA Helicases/genética , RNA Helicases/uso terapêutico , RNA Viral/metabolismo , RNA Viral/uso terapêutico , Tecnologia Farmacêutica/métodos
13.
J Biol Chem ; 280(44): 36784-91, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16087668

RESUMO

VX-950 is a potent, small molecule, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease and has recently been shown to possess antiviral activity in a phase I trial in patients chronically infected with genotype 1 HCV. In a previous study, we described in vitro resistance mutations against either VX-950 or another HCV NS3.4A protease inhibitor, BILN 2061. Single amino acid substitutions that conferred drug resistance (distinct for either inhibitor) were identified in the HCV NS3 serine protease domain. The dominant VX-950-resistant mutant (A156S) remains sensitive to BILN 2061. The major BILN 2061-resistant mutants (D168V and D168A) are fully susceptible to VX-950. Modeling analysis suggested that there are different mechanisms of resistance for these mutations induced by VX-950 or BILN 2061. In this study, we identified mutants that are cross-resistant to both HCV protease inhibitors. The cross-resistance conferred by substitution of Ala(156) with either Val or Thr was confirmed by characterization of the purified enzymes and reconstituted replicon cells containing the single amino acid substitution A156V or A156T. Both cross-resistance mutations (A156V and A156T) displayed significantly diminished fitness (or replication capacity) in a transient replicon cell system.


Assuntos
Carbamatos/farmacologia , Farmacorresistência Viral , Hepacivirus/enzimologia , Compostos Macrocíclicos/farmacologia , Mutação , Oligopeptídeos/farmacologia , Quinolinas/farmacologia , Inibidores de Serina Proteinase/farmacologia , Tiazóis/farmacologia , Proteínas não Estruturais Virais/farmacologia , Substituição de Aminoácidos , Aminoácidos/química , Ácido Aspártico/química , Sítios de Ligação , Genes Dominantes , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , RNA Viral/fisiologia , Replicon/fisiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
14.
Curr Pharm Des ; 11(3): 295-322, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15723627

RESUMO

It has been 10 years since a 3-dimensional structure of the catalytic domain of a Matrix Metalloprotease (MMP) was revealed for the first time in 1994. More than 80 structures of different MMPs in apo and inhibited forms, determined by X-ray crystallography and NMR methods, have been published by the end of year 2003. A large number of very potent inhibitors have been disclosed in published and patent literature. Several MMP inhibitors entered clinical trials for the treatment of cancer and arthritis. Most of the first generation inhibitors have hydroxamic acid as the Zinc-binding group and have limited specificity. With the failure of these inhibitors in clinical trials, more efforts have been directed to the design of specific inhibitors with different Zn-binding groups in recent years. This review will summarize all the published structural information and focus on the inhibitors that were designed to take advantage of the nonprime side of the MMP active site using structural information and computational analysis. Representative structures from all MMPs are aligned to a target structure to provide a better understanding of the similarities and differences of the active site pockets. This analysis supports the view that the differences in the nonprime side pockets provide better opportunities for designing inhibitors with higher specificity. Published information on all the Zinc-binding groups of MMP inhibitors is reviewed for the first time. Pros and cons of inhibitors with non-hydroxamate Zinc-binding groups in terms of specificity, toxicity and pharmacokinetic properties are discussed.


Assuntos
Desenho Assistido por Computador/tendências , Desenho de Fármacos , Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/química , Relação Quantitativa Estrutura-Atividade , Tecnologia Farmacêutica/tendências , Animais , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Humanos , Metaloproteinases da Matriz/uso terapêutico , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , Conformação Proteica , Tecnologia Farmacêutica/métodos
16.
Bioorg Med Chem Lett ; 14(8): 1939-42, 2004 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-15050632

RESUMO

We recently described the identification of an optimized alpha-ketoamide warhead for our series of HCV NS3.4A inhibitors. We report herein a series of HCV protease inhibitors incorporating 3-alkyl-substituted prolines in P(2). These compounds show exceptional enzymatic and cellular potency given their relatively small size. The marked enhancement of activity of these 3-substituted proline derivatives relative to previously reported 4-hydroxyproline derivatives constitutes additional evidence for the importance of the S(2) binding pocket as the defining pharmacophore for inhibition of the NS3.4A enzyme.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Oligopeptídeos/farmacologia , Prolina/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Hepatite C/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Prolina/síntese química , Prolina/química , Relação Estrutura-Atividade
17.
J Biol Chem ; 279(17): 17508-14, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-14766754

RESUMO

We have used a structure-based drug design approach to identify small molecule inhibitors of the hepatitis C virus (HCV) NS3.4A protease as potential candidates for new anti-HCV therapies. VX-950 is a potent NS3.4A protease inhibitor that was recently selected as a clinical development candidate for hepatitis C treatment. In this report, we describe in vitro resistance studies using a subgenomic replicon system to compare VX-950 with another HCV NS3.4A protease inhibitor, BILN 2061, for which the Phase I clinical trial results were reported recently. Distinct drug-resistant substitutions of a single amino acid were identified in the HCV NS3 serine protease domain for both inhibitors. The resistance conferred by these mutations was confirmed by characterization of the mutant enzymes and replicon cells that contain the single amino acid substitutions. The major BILN 2061-resistant mutations at Asp(168) are fully susceptible to VX-950, and the dominant resistant mutation against VX-950 at Ala(156) remains sensitive to BILN 2061. Modeling analysis suggests that there are different mechanisms of resistance to VX-950 and BILN 2061.


Assuntos
Carbamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/enzimologia , Compostos Macrocíclicos , Oligopeptídeos/farmacologia , Quinolinas , Inibidores de Serina Proteinase/farmacologia , Tiazóis/farmacologia , Proteínas não Estruturais Virais/química , Aminoácidos/química , Ácido Aspártico/química , Sítios de Ligação , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Genes Dominantes , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Fatores de Tempo , Proteínas não Estruturais Virais/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...