Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
2.
Int J Oncol ; 58(5)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33878845

RESUMO

Following the publication of the above paper, we were contacted by the University of Illinois at Chicago, to request the retraction of the above article. Following a formal institutional investigation, the investigation panel concluded that the images in question had falsifying elements. Regarding the above study, the specific allegations that were investigated were that of falsifying elements of Fig. 6A, row 2, columns 2 and 3. Following a review of this paper conducted independently by the Editor of International Journal of Oncology, the Editor concurred with the conclusions of the investigation panel, and therefore the above paper has been retracted from the publication. We also tried to contact the authors, but did not receive a reply. The Editor apologizes to the readership for the inconvenience caused.[the original article was published in International Journal of Oncology 40: 509­518, 2012; DOI: 10.3892/ijo.2011.1255].

4.
Int J Oncol ; 58(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33655319

RESUMO

Following the publication of the above paper, we were contacted by the University of Illinois at Chicago, to request the retraction of the above article. Following a formal institutional investigation, the investigation panel concluded that the images in question had falsifying elements. Regarding the above study, the specific allegations that were investigated were that of falsifying elements of Fig. 1B, bottom panel, columns 2 and 3; Fig. 4A, top panel, columns 4, 5 and 6, and middle panel, columns 1, 2 and 3; and Fig. 7D, row 1, column 1 and row 2, column 1.
Following a review of this paper conducted independently by the Editor of International Journal of Oncology, the Editor concurred with the conclusions of the investigation panel, and therefore the above paper has been retracted from the publication. We also tried to contact the authors, but did not receive a reply. The Editor apologizes to the readership for the inconvenience caused. [the original article was published in International Journal of Oncology 38: 973­983, 2011; DOI: 10.3892/ijo.2011.934]

.

5.
Int J Oncol ; 58(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33655324

RESUMO

Following the publication of the above paper, we were contacted by the University of Illinois at Chicago, to request the retraction of the above article. Following a formal institutional investigation, the investigation panel concluded that the images in question had falsifying elements. Regarding the above study, the specific allegations that were investigated were that of falsifying elements of Fig. 2A, right panel, row 3, columns 2, 3 and 4 and Fig. 4D, left panel, row 5, columns 1, 2 and 3; Fig. 4A, row 1, columns 2, 3 and 4, and Fig. 4C, row 1, columns 5, 6 and 7; and Fig. 6C, row 1, column 3, and row 2, column 1.
Following a review of this paper conducted independently by the Editor of International Journal of Oncology, the Editor concurred with the conclusions of the investigation panel, and therefore the above paper has been retracted from the publication. We also tried to contact the authors, but did not receive a reply. The Editor apologizes to the readership for the inconvenience caused. [the original article was published in International Journal of Oncology 40: 1615-1624, 2012; DOI: 10.3892/ijo.2011.987].

11.
Stem Cell Res ; 12(3): 716-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24699410

RESUMO

In the present study, we investigated the effect of simultaneous downregulation of uPAR and cathepsin B (pUC), alone or in combination with radiation, on JNK-MAPK signaling pathway in regulating the migration of non-GICs (glioma-initiating cells) and GICs. The increase in the expression of p-JNK with pUC treatment was mostly localized to nucleus whereas increase in the expression of p-JNK with radiation and overexpression of uPAR and cathepsin B was confined to cytoplasm of the cells. Depletion of cytosolic p-JNK with pUC treatment inhibited migration by downregulating the expression of the adapter proteins of the focal adhesion complex. We also observed that knockdown of uPAR and cathepsin B regulated the Ras-Pak-1 pathway to induce the translocation of p-JNK from cytosol to nucleus. In control cells, Pak-1 served as a functional inhibitor for MEKK-1, which inhibits the complex formation of MEKK-1 and p-JNK and thus inhibits the translocation of this complex into nucleus. Hence, we conclude that glioma cells utilize the availability of cytosolic p-JNK in driving the cells towards migration. Finally, treating the cells with pUC alone or in combination with radiation induced the translocation of the MEKK-1-p-JNK complex from cytosol to nucleus, thereby inhibiting the migration of glioma cells.


Assuntos
Catepsina B/metabolismo , Movimento Celular , Glioma/enzimologia , MAP Quinase Quinase 4/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Catepsina B/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/metabolismo , Citosol/enzimologia , Citosol/metabolismo , Feminino , Glioma/genética , Glioma/metabolismo , Glioma/fisiopatologia , Humanos , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Transporte Proteico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
12.
Mol Cancer Ther ; 13(5): 1309-22, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623737

RESUMO

Urokinase-type plasminogen activator receptor (uPAR) is overexpressed in the tumor-stromal invasive microenvironment in many human cancers, including medulloblastoma. The role of uPAR in tumor progression and angiogenesis has been well characterized. Previously, in medulloblastoma cells, we showed that ionizing radiation (IR)-induced uPAR is a potent activator of cancer stem cell (CSC)-like properties and is associated with various transcription factors that are involved during embryonic development and cancer. In the present study, we show that uPAR protein acts as a cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand-1. The Hand-1 protein plays an essential role in the differentiation of trophoblast giant cells and cardiac morphogenesis, and yet its precise cellular function and its contribution to cancer remain mostly unknown. We also observed that the Hand-1 protein is upregulated in uPAR short hairpin RNA-treated medulloblastoma cells and accompanies sustained cell growth and angiogenesis. Furthermore, IR-induced uPAR overexpression negatively regulates Hand-1 activity and results in the stabilization of angiogenesis-promoting molecules, including hypoxia-inducible factor-1α. Finally, uPAR overexpression and its association with Hand-1 after IR treatment indicate that uPAR is capable of regulating Hand-1 and that uPAR has a role in the process of IR-induced tumor angiogenesis.


Assuntos
Transporte Ativo do Núcleo Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Meduloblastoma/metabolismo , Tolerância a Radiação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Citoplasma/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Neovascularização Patológica/genética , Ligação Proteica , Transporte Proteico , Radiação Ionizante , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Carga Tumoral
13.
Mol Neurobiol ; 49(1): 50-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23813097

RESUMO

A tremendous effort has been expended to elucidate the role of apoptotic molecules in ischemia. However, many agents that target apoptosis, despite their proven efficacy in animal models, have failed to translate that efficacy and specificity in clinical settings. Therefore, comprehensive knowledge of apoptotic mechanisms involving key apoptotic regulatory molecules and the temporal expression profiles of various apoptotic molecules after cerebral ischemia may provide insight for the development of better therapeutic strategies aimed at cerebral ischemia. The present study investigates the extent of apoptosis and the regulation of apoptotic molecules both at mRNA and protein levels at various time points after focal cerebral ischemia in a rat model of middle cerebral artery occlusion. In this study, we performed various techniques, such as TTC (2,3,5-triphenyltetrazolium chloride), H&E (hematoxylin and eosin), and TUNEL (terminal deoxy nucleotidyl transferase-mediated nick-end labeling) staining, along with polymerase chain reaction (PCR) microarray, antibody microarray, reverse transcription (RT)-PCR, immunofluorescence, and immunoblot analyses. Our research provided a large list of pro-apoptotic and anti-apoptotic molecules and their temporal expression profiles both at the mRNA and protein levels. This information could be very useful for designing future stroke therapies and aid in targeting the right molecules at critical time to obtain maximum therapeutic benefit.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/biossíntese , Apoptose/fisiologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Reperfusão , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/fisiologia , Infarto da Artéria Cerebral Média/genética , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Reperfusão/métodos , Fatores de Tempo
14.
BMC Cancer ; 13: 590, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24325546

RESUMO

BACKGROUND: Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9ß1 signaling. Our recent studies have clearly demonstrated the role of α9ß1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9ß1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. METHODS: MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. RESULTS: Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions of cSrc, phosphoSrc and p130Cas were reduced with simultaneous knockdown of both MMP-9 and uPAR. CONCLUSIONS: Taken together, our results from the present and earlier studies clearly demonstrate that α9ß1 integrin-mediated cell migration utilizes the iNOS pathway, and inhibition of the migratory potential of glioma cells by simultaneous knockdown of MMP-9 and uPAR could be attributed to the reduced α9ß1 integrin and iNOS levels.


Assuntos
Movimento Celular , Glioma/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Óxido Nítrico Sintase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Integrinas/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos , Modelos Biológicos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Interferência de RNA , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
15.
Mol Biol Cell ; 24(17): 2620-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864708

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is almost always lethal. One of the underlying reasons for this lethality is believed to be the presence of cancer stem cells (CSC), which impart chemoresistance and promote recurrence, but the mechanisms responsible are unclear. Recently the poor prognosis of PDAC has been correlated with increased expression of urokinase plasminogen activator (uPA). In the present study we examine the role of uPA in the generation of PDAC CSC. We observe a subset of cells identifiable as a side population (SP) when sorted by flow cytometry of MIA PaCa-2 and PANC-1 pancreatic cancer cells that possess the properties of CSC. A large fraction of these SP cells are CD44 and CD24 positive, are gemcitabine resistant, possess sphere-forming ability, and exhibit increased tumorigenicity, known characteristics of cancer stemness. Increased tumorigenicity and gemcitabine resistance decrease after suppression of uPA. We observe that uPA interacts directly with transcription factors LIM homeobox-2 (Lhx2), homeobox transcription factor A5 (HOXA5), and Hey to possibly promote cancer stemness. uPA regulates Lhx2 expression by suppressing expression of miR-124 and p53 expression by repressing its promoter by inactivating HOXA5. These results demonstrate that regulation of gene transcription by uPA contributes to cancer stemness and clinical lethality.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Células-Tronco Neoplásicas/fisiologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas com Homeodomínio LIM/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Células da Side Population/efeitos dos fármacos , Células da Side Population/fisiologia , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Gencitabina
16.
Biochem Biophys Res Commun ; 434(3): 627-33, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23583374

RESUMO

MicroRNAs are a novel family of small non-coding RNAs that regulate the expression of several genes involved in normal development as well as human disorders including cancer. Here we show that miR-874 plays a tumor suppressor role in non-small cell lung cancer (NSCLC) in vitro and in vivo. In silico target prediction analysis revealed numerous genes associated with tumor progression including MMP-2 and uPA as the putative target genes of miR-874. Our preliminary in situ hybridization experiments demonstrated the diminution of miR-874 expression in lung cancer tissues compared to their normal counter parts. Overexpression of miR-874 in CD133-positive cancer stem cell (CSC) population led to a significant loss in CSC-phenotype and enhanced sphere de-differentiation into epithelial-like cells. Restoration of miR-874 expression drastically reduced cell invading ability in comparison to mock and control-miR-treated cells by suppressing the protein levels of MMP-2 and uPA. In in vivo experiments, miR-874 treatment decreased orthotopic tumor growth in nude mice compared to mock and control-miR treatments. Further, the immunoreactivity of human anti-MMP-2 and anti-uPA was significantly reduced in tumor sections from mice that received miR-874 treatment. In conclusion, our study highlights the possible tumor suppressor role of miR-874 in NSCLC-initiating cells and suggests miR-874 as a potential target in the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Divisão Celular/genética , Neoplasias Pulmonares/patologia , MicroRNAs/fisiologia , Invasividade Neoplásica/genética , Sequência de Bases , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Primers do DNA , Humanos , Imuno-Histoquímica , Hibridização In Situ , Neoplasias Pulmonares/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Int J Oncol ; 42(4): 1279-88, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23381805

RESUMO

The majority of glioblastoma multiforme (GBM) tumors recur after radiation (IR) treatment due to increased angiogenesis and IR-induced signaling events in endothelial cells (ECs) that are involved in tumor neovascularization; however, these signaling events have yet to be well characterized. In the present study, we observed that IR (8 Gy) significantly elevated MMP-2 expression and gelatinolytic activity in 4910 and 5310 human GBM xenograft cells. In addition, ECs treated with tumor-conditioned media (CM) obtained from IR-treated 4910 and 5310 cells showed increased microtubule formation. In view of this finding, we investigated the possible anti-angiogenic effects of MMP-2 downregulation using siRNA (pM.si) in IR-treated cells. We also determined the effect of CM obtained from mock, pSV (scrambled vector) and pMMP-2.si on endothelial cell growth and vessel formation. pM.si-CM-treated ECs showed inhibited IR-CM-induced SDF-1, CXCR4, phospho-PI3K and phospho-AKT and αvß3 expression levels. In vitro angiogenesis assays also showed that the pM.si+IR decreased IR-induced vessel formation in ECs. Immunofluorescence and immunoprecipitation experiments indicated the abrogation of αvß3-SDF-1 interaction in pM.si-CM-treated ECs when compared to mock or pSV treatments. External supplementation of either rhMMP-2 or rhSDF-1 counteracted and noticeably reversed pM.si-inhibited SDF-1, CXCR4, phospho-PI3K and phospho-AKT expression levels and angiogenesis, thereby confirming the role of MMP-2 in the regulation of αvß3-mediated SDF-1/CXCR4 signaling. In addition to the in vitro results, the in vivo mouse dorsal air sac model also showed reduced angiogenesis after injection of pM.si alone or in combination with IR-treated xenograft cells. In contrast, injection of mock or pSV-treated cells resulted in robust formation of characteristic neovascularization. Collectively, our data demonstrate the role of MMP-2 in the regulation of SDF-1/CXCR4 signaling-mediated angiogenesis in ECs and show the anti-angiogenic efficacy of combining MMP-2 downregulation and IR when treating patients with GBM in the future.


Assuntos
Células Endoteliais/enzimologia , Glioblastoma/radioterapia , Integrina alfaVbeta3/metabolismo , Metaloproteinase 2 da Matriz/genética , Neovascularização Patológica/enzimologia , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Meios de Cultivo Condicionados , Células Endoteliais/efeitos da radiação , Endotélio Vascular/enzimologia , Endotélio Vascular/patologia , Técnicas de Silenciamento de Genes , Glioblastoma/irrigação sanguínea , Glioblastoma/enzimologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Tolerância a Radiação , Receptores CXCR4/metabolismo
18.
Neoplasia ; 15(2): 192-203, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23441133

RESUMO

Our previous studies have shown the role of radiation-induced urokinase plasminogen activator (uPA) expression in the progression of meningioma. In the present study, we investigated whether modulation of DNA methylation profiles could regulate uPA expression. Initially, radiation treatment was found to induce hypomethylation in meningioma cells with a decrease in DNA (cytosine-5)-methyltransferase 1 (DNMT1) and methyl-CpG binding domain protein (MBD) expression. However, oxidative damage by H(2)O(2) or pretreatment of irradiated cells with N-acetyl cysteine (NAC) did not show any influence on these proteins, thereby indicating a radiation-specific change in the methylation patterns among meningioma cells. Further, we identified that hypomethylation is coupled to an increase in uPA expression in these cells. Azacytidine treatment induced a dose-dependent surge of uPA expression, whereas pre-treatment with sodium butyrate inhibited radiation-induced uPA expression, which complemented our prior results. Methylation-specific polymerase chain reaction on bisulfite-treated genomic DNA revealed a diminished methylation of uPA promoter in irradiated cells. Transfection with small hairpin RNA (shRNA)-expressing plasmids targeting CpG islands of the uPA promoter showed a marked decline in uPA expression with subsequent decrease in invasion and proliferation of meningioma cells. Further, radiation treatment was found to recruit SP1 transcription factor, which was abrogated by shRNA treatment. Analysis on signaling events demonstrated the activation of MAP kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) in radiation-treated cells, while U0126 (MEK/ERK inhibitor) blocked hypomethylation, recruitment of SP1, and uPA expression. In agreement with our in vitro data, low DNMT1 levels and high uPA were found in intracranial tumors treated with radiation compared to untreated tumors. In conclusion, our data suggest that radiation-mediated hypomethylation triggers uPA expression in meningioma cells.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Meningioma/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Imunoglobulinas/metabolismo , Meningioma/patologia , Estresse Oxidativo/efeitos da radiação , Regiões Promotoras Genéticas/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/efeitos da radiação , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
19.
Expert Opin Ther Targets ; 17(3): 281-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23293836

RESUMO

INTRODUCTION: Cathepsin B is of significant importance to cancer therapy as it is involved in various pathologies and oncogenic processes in humans. Numerous studies have shown that abnormal regulation of cathepsin B overexpression is correlated with invasive and metastatic phenotypes in cancers. Cathepsin B is normally associated with the lysosomes involved in autophagy and immune response, but its aberrant expression has been shown to lead to cancers. AREAS COVERED: This review highlights the oncogenic role of cathepsin B, discusses the regulation of cathepsin B in light of oncogenesis, discusses the role of cathepsin B as a signaling molecule, and highlights the therapeutic potential of targeting cathepsin B. EXPERT OPINION: Targeting cathepsin B alone does not appear to abolish tumor growth, and this is probably because cathepsin B appears to have diverse functions and influence numerous pathways. It is not clear whether global suppression of cathepsin B activity or expression would produce unintended effects or cause the activation or suppression of unwanted pathways. A localized approach for targeting the expression of cathepsin B would be more relevant. Moreover, a combination of targeting cathepsin B with other relevant oncogenic molecules has significant therapeutic potential.


Assuntos
Catepsina B/metabolismo , Neoplasias/metabolismo , Animais , Catepsina B/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico
20.
Int J Oncol ; 42(1): 188-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23123816

RESUMO

Our previous studies showed that overexpression of secreted protein acidic and rich in cysteine (SPARC) induced autophagy-mediated apoptosis in PNET cells. In the present study, we attempted to elucidate the molecular mechanisms and signaling cascades associated with SPARC overexpression in combination with radiation therapy that eventually leads to autophagy-mediated apoptosis in neuroblastoma. SPARC expression in SK-N-AS and NB-1691 cells demonstrated the activation of caspase 3, cleavage of PARP and induction of apoptosis. The experiments to unravel the mechanisms associated with autophagy-apoptosis illustrated that SPARC overexpression triggered endoplasmic reticulum (ER) stress and thereby unfolded protein response (UPR). This was apparent with the activation of stress receptors, inositol-requiring enzyme (IRE 1α), RNA-dependent protein kinase (PKR)-like ER kinase (PERK) and BiP. This study further demonstrated the induction of transcription factor CHOP as a result of IRE-JNK activation in response to increased SPARC levels. Inhibition of ER stress and JNK activation led to inhibition of autophagy-mediated apoptosis. Further, the apparent expression of ER stress molecules among the orthotopic tumors treated by SPARC overexpression plasmids substantiated our in vitro observations. Taken together, these results illustrate the critical role of ER stress in regulating autophagy-mediated apoptosis in SPARC-overexpressed neuroblastoma cells and radiation treatment.


Assuntos
Apoptose , Autofagia , Estresse do Retículo Endoplasmático , Neuroblastoma/patologia , Osteonectina/metabolismo , Western Blotting , Caspase 3/genética , Caspase 3/metabolismo , Terapia Combinada , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/terapia , Osteonectina/genética , Fosforilação , RNA Mensageiro/genética , Radiação Ionizante , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Células Tumorais Cultivadas , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...