Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(5): 1227-1239, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751037

RESUMO

AMOTL1 encodes angiomotin-like protein 1, an actin-binding protein that regulates cell polarity, adhesion, and migration. The role of AMOTL1 in human disease is equivocal. We report a large cohort of individuals harboring heterozygous AMOTL1 variants and define a core phenotype of orofacial clefting, congenital heart disease, tall stature, auricular anomalies, and gastrointestinal manifestations in individuals with variants in AMOTL1 affecting amino acids 157-161, a functionally undefined but highly conserved region. Three individuals with AMOTL1 variants outside this region are also described who had variable presentations with orofacial clefting and multi-organ disease. Our case cohort suggests that heterozygous missense variants in AMOTL1, most commonly affecting amino acid residues 157-161, define a new orofacial clefting syndrome, and indicates an important functional role for this undefined region.


Assuntos
Fenda Labial , Fissura Palatina , Cardiopatias Congênitas , Humanos , Fissura Palatina/diagnóstico , Fissura Palatina/genética , Fenda Labial/diagnóstico , Fenda Labial/genética , Mutação , Mutação de Sentido Incorreto/genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Angiomotinas
2.
Cell Rep Med ; 2(5): 100267, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095877

RESUMO

The lack of effective treatment options for advanced non-clear cell renal cell carcinoma (NCCRCC) is a critical unmet clinical need. Applying a high-throughput drug screen to multiple human kidney cancer cells, we identify the combination of the VEGFR-MET inhibitor cabozantinib and the SRC inhibitor dasatinib acts synergistically in cells to markedly reduce cell viability. Importantly, the combination is well tolerated and causes tumor regression in vivo. Transcriptional and phosphoproteomic profiling reveals that the combination converges to downregulate the MAPK-ERK signaling pathway, a result not predicted by single-agent analysis alone. Correspondingly, the addition of a MEK inhibitor synergizes with either dasatinib or cabozantinib to increase its efficacy. This study, by using approved, clinically relevant drugs, provides the rationale for the design of effective combination treatments in NCCRCC that can be rapidly translated to the clinic.


Assuntos
Anilidas/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Dasatinibe/farmacologia , Piridinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
3.
Front Microbiol ; 9: 2367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337918

RESUMO

The ascomycete fungus Colletotrichum truncatum is a major phytopathogen with a broad host range which causes anthracnose disease of chilli. The genome sequencing of this fungus led to the discovery of functional categories of genes that may play important roles in fungal pathogenicity. However, the presence of gaps in C. truncatum draft assembly prevented the accurate prediction of repetitive elements, which are the key players to determine the genome architecture and drive evolution and host adaptation. We re-sequenced its genome using single-molecule real-time (SMRT) sequencing technology to obtain a refined assembly with lesser and smaller gaps and ambiguities. This enabled us to study its genome architecture by characterising the repetitive sequences like transposable elements (TEs) and simple sequence repeats (SSRs), which constituted 4.9 and 0.38% of the assembled genome, respectively. The comparative analysis among different Colletotrichum species revealed the extensive repeat rich regions, dominated by Gypsy superfamily of long terminal repeats (LTRs), and the differential composition of SSRs in their genomes. Our study revealed a recent burst of LTR amplification in C. truncatum, C. higginsianum, and C. scovillei. TEs in C. truncatum were significantly associated with secretome, effectors and genes in secondary metabolism clusters. Some of the TE families in C. truncatum showed cytosine to thymine transitions indicative of repeat-induced point mutation (RIP). C. orbiculare and C. graminicola showed strong signatures of RIP across their genomes and "two-speed" genomes with extensive AT-rich and gene-sparse regions. Comparative genomic analyses of Colletotrichum species provided an insight into the species-specific SSR profiles. The SSRs in the coding and non-coding regions of the genome revealed the composition of trinucleotide repeat motifs in exons with potential to alter the translated protein structure through amino acid repeats. This is the first genome-wide study of TEs and SSRs in C. truncatum and their comparative analysis with six other Colletotrichum species, which would serve as a useful resource for future research to get insights into the potential role of TEs in genome expansion and evolution of Colletotrichum fungi and for development of SSR-based molecular markers for population genomic studies.

4.
Genes Dev ; 31(20): 2067-2084, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29138276

RESUMO

There is limited knowledge about the metabolic reprogramming induced by cancer therapies and how this contributes to therapeutic resistance. Here we show that although inhibition of PI3K-AKT-mTOR signaling markedly decreased glycolysis and restrained tumor growth, these signaling and metabolic restrictions triggered autophagy, which supplied the metabolites required for the maintenance of mitochondrial respiration and redox homeostasis. Specifically, we found that survival of cancer cells was critically dependent on phospholipase A2 (PLA2) to mobilize lysophospholipids and free fatty acids to sustain fatty acid oxidation and oxidative phosphorylation. Consistent with this, we observed significantly increased lipid droplets, with subsequent mobilization to mitochondria. These changes were abrogated in cells deficient for the essential autophagy gene ATG5 Accordingly, inhibition of PLA2 significantly decreased lipid droplets, decreased oxidative phosphorylation, and increased apoptosis. Together, these results describe how treatment-induced autophagy provides nutrients for cancer cell survival and identifies novel cotreatment strategies to override this survival advantage.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose , Autofagia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Fosfolipase A2/farmacologia , Fosfolipídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Células Tumorais Cultivadas
5.
PLoS One ; 12(8): e0183567, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28846714

RESUMO

Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.


Assuntos
Capsicum/microbiologia , Colletotrichum/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Transcriptoma
6.
Mol Oncol ; 11(8): 927-944, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28378523

RESUMO

Glioblastoma (GBM) is the most frequent and most malignant primary brain tumour in adults. GBMs have a unique landscape of somatic copy number alterations (SCNAs), with the concomitant appearance of numerous driver amplifications and deletions. Here, we examined the genomic regions harbouring SCNAs and their impact on the GBM miRNome. We found that 40% of SCNA events covering 70-88% of the genomically altered regions, as identified by GISTIC and RAE algorithms, carried miRNA genes. Of 1426 annotated mature miRNAs analysed, ~ 14% (n = 198) were mapped to such fragile loci. Further, we identified an intragenic miRNA, miR-4484 located on chromosome-10, as a deleted and downregulated miRNA in GBM. miR-4484 exhibited a strong positive correlation with the expression of its host gene uroporphyrinogen III synthase (UROS), thereby indicating that the loss of miR-4484 is a codeletion event in GBM. Overexpression of miR-4484 reduced the colony-forming ability and suppressed the migratory capacity of glioma cells. Analysis of the RNA-seq-derived transcriptome upon exogenous miR-4484 overexpression in conjunction with an integrative bioinformatics approach revealed several putative targets of miR-4484. Unbiased functional enrichment of these targets through DAVID identified a cohort of important gene ontology terms, which possibly explain the functional role of miR-4484 in gliomagenesis. Selected targets were validated and, importantly, were found to be upregulated in GBM. In brief, our study identified a panel of miRNAs that are likely to be regulated by genomic deletions and amplifications. Further, miR-4484 was found to be deleted and acts as a tumour suppressor miRNA in GBM.


Assuntos
Neoplasias Encefálicas/genética , Deleção de Genes , Genes Supressores de Tumor , Glioblastoma/metabolismo , MicroRNAs/genética , RNA Neoplásico/genética , Adulto , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Dosagem de Genes , Glioblastoma/genética , Humanos , Masculino , MicroRNAs/metabolismo
7.
Oncotarget ; 6(42): 44675-87, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26625308

RESUMO

The intracytoplasmic tyrosine kinase Src serves both as a conduit and a regulator for multiple processes required for the proliferation and survival cancer cells. In some cancers, Src engages with receptor tyrosine kinases to mediate downstream signaling and in other cancers, it regulates gene expression. Src therefore represents a viable oncologic target. However, clinical responses to Src inhibitors, such as dasatinib have been disappointing to date. We identified Stat3 signaling as a potential bypass mechanism that enables renal cell carcinoma (RCC) cells to escape dasatinib treatment. Combined Src-Stat3 inhibition using dasatinib and CYT387 (a JAK/STAT inhibitor) synergistically reduced cell proliferation and increased apoptosis in RCC cells. Moreover, dasatinib and CYT387 combine to suppress YAP1, a transcriptional co-activator that promotes cell proliferation, survival and organ size. Importantly, this combination was well tolerated, and caused marked tumor inhibition in RCC xenografts. These results suggest that combination therapy with inhibitors of Stat3 signaling may be a useful therapeutic approach to increase the efficacy of Src inhibitors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Dasatinibe/farmacologia , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Terapia de Alvo Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição , Transcrição Gênica , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , Quinases da Família src/metabolismo
8.
PLoS One ; 9(1): e85200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475040

RESUMO

Anaplastic astrocytoma (AA; Grade III) and glioblastoma (GBM; Grade IV) are diffusely infiltrating tumors and are called malignant astrocytomas. The treatment regimen and prognosis are distinctly different between anaplastic astrocytoma and glioblastoma patients. Although histopathology based current grading system is well accepted and largely reproducible, intratumoral histologic variations often lead to difficulties in classification of malignant astrocytoma samples. In order to obtain a more robust molecular classifier, we analysed RT-qPCR expression data of 175 differentially regulated genes across astrocytoma using Prediction Analysis of Microarrays (PAM) and found the most discriminatory 16-gene expression signature for the classification of anaplastic astrocytoma and glioblastoma. The 16-gene signature obtained in the training set was validated in the test set with diagnostic accuracy of 89%. Additionally, validation of the 16-gene signature in multiple independent cohorts revealed that the signature predicted anaplastic astrocytoma and glioblastoma samples with accuracy rates of 99%, 88%, and 92% in TCGA, GSE1993 and GSE4422 datasets, respectively. The protein-protein interaction network and pathway analysis suggested that the 16-genes of the signature identified epithelial-mesenchymal transition (EMT) pathway as the most differentially regulated pathway in glioblastoma compared to anaplastic astrocytoma. In addition to identifying 16 gene classification signature, we also demonstrated that genes involved in epithelial-mesenchymal transition may play an important role in distinguishing glioblastoma from anaplastic astrocytoma.


Assuntos
Astrocitoma/genética , Astrocitoma/patologia , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Transcriptoma , Adulto , Idoso , Astrocitoma/diagnóstico , Astrocitoma/mortalidade , Biomarcadores Tumorais , Análise por Conglomerados , Diagnóstico Diferencial , Redes Reguladoras de Genes , Glioblastoma/diagnóstico , Glioblastoma/mortalidade , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Reprodutibilidade dos Testes , Adulto Jovem
9.
PLoS One ; 8(5): e63164, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690991

RESUMO

Glioblastoma is one of the common types of primary brain tumors with a median survival of 12-15 months. The receptor tyrosine kinase (RTK) pathway is known to be deregulated in 88% of the patients with glioblastoma. 45% of GBM patients show amplifications and activating mutations in EGFR gene leading to the upregulation of the pathway. In the present study, we demonstrate that a brain specific miRNA, miR-219-5p, repressed EGFR by directly binding to its 3'-UTR. The expression of miR-219-5p was downregulated in glioblastoma and the overexpression of miR-219-5p in glioma cell lines inhibited the proliferation, anchorage independent growth and migration. In addition, miR-219-5p inhibited MAPK and PI3K pathways in glioma cell lines in concordance with its ability to target EGFR. The inhibitory effect of miR-219-5p on MAPK and PI3K pathways and glioma cell migration could be rescued by the overexpression of wild type EGFR and vIII mutant of EGFR (both lacking 3'-UTR and thus being insensitive to miR-219-5p) suggesting that the inhibitory effects of miR-219-5p were indeed because of its ability to target EGFR. We also found significant negative correlation between miR-219-5p levels and total as well as phosphorylated forms of EGFR in glioblastoma patient samples. This indicated that the downregulation of miR-219-5p in glioblastoma patients contribute to the increased activity of the RTK pathway by the upregulation of EGFR. Thus, we have identified and characterized miR-219-5p as the RTK regulating novel tumor suppressor miRNA in glioblastoma.


Assuntos
Receptores ErbB/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/fisiologia , Regiões 3' não Traduzidas/genética , Western Blotting , Linhagem Celular Tumoral , Ensaio de Unidades Formadoras de Colônias , Primers do DNA/genética , Humanos , Análise em Microsséries , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase em Tempo Real , Receptores Proteína Tirosina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Mod Pathol ; 23(10): 1404-17, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20711171

RESUMO

Malignant astrocytoma includes anaplastic astrocytoma (grade III) and glioblastoma (grade IV). Among them, glioblastoma is the most common primary brain tumor with dismal responses to all therapeutic modalities. We performed a large-scale, genome-wide microRNA (miRNA) (n=756) expression profiling of 26 glioblastoma, 13 anaplastic astrocytoma and 7 normal brain samples with an aim to find deregulated miRNA in malignant astrocytoma. We identified several differentially regulated miRNAs between these groups, which could differentiate glioma grades and normal brain as recognized by PCA. More importantly, we identified a most discriminatory 23-miRNA expression signature, by using PAM, which precisely distinguished glioblastoma from anaplastic astrocytoma with an accuracy of 95%. The differential expression pattern of nine miRNAs was further validated by real-time RT-PCR on an independent set of malignant astrocytomas (n=72) and normal samples (n=7). Inhibition of two glioblastoma-upregulated miRNAs (miR-21 and miR-23a) and exogenous overexpression of two glioblastoma-downregulated miRNAs (miR-218 and miR-219-5p) resulted in reduced soft agar colony formation but showed varying effects on cell proliferation and chemosensitivity. Thus we have identified the miRNA expression signature for malignant astrocytoma, in particular glioblastoma, and showed the miRNA involvement and their importance in astrocytoma development.


Assuntos
Astrocitoma/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , MicroRNAs/genética , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , MicroRNAs/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Saudi J Gastroenterol ; 16(2): 79-83, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20339175

RESUMO

BACKGROUND/AIM: Paraoxonase 1 (PON1) is an esterase, exclusively synthesized by liver. The present study has two objectives: to determine the PON1 activity status in various disorders associated with hepatocellular damage and to correlate the changes of PON1 activity with the standard liver function and fasting lipid profile tests in these disorders. PATIENTS AND METHODS: The study groups consisted of 95 patients with liver diseases including acute viral hepatitis (14), cirrhosis with portal hypertension (33), leptospirosis (14), sepsis and multi organ failure (15), left ventricular failure (9), and falciparum malaria (10); and 53 healthy controls. Serum PON1 activity was measured manually using spectrophotometer. Liver function test parameters and fasting lipid profile were performed in clinical chemistry auto analyzer (Hitachi 912). RESULTS: The serum PON1 activity in patients with acute viral hepatitis and sepsis decreased significantly ( P < 0.001) and moderately in falciparum malaria ( P < 0.05). However, in patients with cirrhosis, leptospirosis and left ventricular patients, its activity did not change significantly. On applying Pearson correlation, serum PON1 activity correlated positively with high-density lipoprotein-cholesterol (HDL-C) in patients with sepsis (r=0.633, P < 0.05), left ventricular failure patients (r=0.814, P < 0.05) and negatively with acute viral hepatitis patients (r=-0.528, P <0.05). CONCLUSION: PON1 activity has decreased significantly in acute viral hepatitis, sepsis with multi organ failure and falciparum malaria patients. Determination of PON1 activity may serve as a useful additional test in assessing these conditions.


Assuntos
Arildialquilfosfatase/sangue , Hepatopatias/diagnóstico , Hepatopatias/enzimologia , Doença Aguda , Adulto , Idoso , Análise de Variância , Arildialquilfosfatase/análise , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Hepatite Viral Humana/sangue , Hepatite Viral Humana/diagnóstico , Humanos , Leptospirose/sangue , Leptospirose/diagnóstico , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Malária Falciparum/sangue , Malária Falciparum/diagnóstico , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/diagnóstico , Prognóstico , Valores de Referência , Sensibilidade e Especificidade , Sepse/sangue , Sepse/diagnóstico , Índice de Gravidade de Doença
12.
Arthritis Rheum ; 58(12): 3675-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19035488

RESUMO

OBJECTIVE: To determine whether methotrexate (MTX) can overcome the atherogenic effects of cyclooxygenase 2 (COX-2) inhibitors and interferon-gamma (IFNgamma), both of which suppress cholesterol efflux protein and promote foam cell transformation in human THP-1 monocyte/macrophages. METHODS: Message and protein levels of the reverse cholesterol transport proteins cholesterol 27-hydroxylase and ATP-binding cassette transporter A1 (ABCA1) in THP-1 cells were evaluated by real-time polymerase chain reaction and immunoblot, respectively. Expression was evaluated in cells incubated in the presence or absence of the COX-2 inhibitor NS398 or IFNgamma, with and without MTX. Foam cell transformation of lipid-laden THP-1 macrophages was detected with oil red O staining and light microscopy. RESULTS: MTX increased 27-hydroxylase message and completely blocked NS398-induced down-regulation of 27-hydroxylase (mean +/- SEM 112.8 +/- 13.1% for NS398 plus MTX versus 71.1 +/- 4.3% for NS398 alone; P < 0.01). MTX also negated COX-2 inhibitor-mediated down-regulation of ABCA1. The ability of MTX to reverse inhibitory effects on 27-hydroxylase and ABCA1 was blocked by the adenosine A2A receptor-specific antagonist ZM241385. MTX also prevented NS398 and IFNgamma from increasing transformation of lipid-laden THP-1 macrophages into foam cells. CONCLUSION: This study provides evidence supporting the notion of an atheroprotective effect of MTX. Through adenosine A2A receptor activation, MTX promotes reverse cholesterol transport and limits foam cell formation in THP-1 macrophages. This is the first reported evidence that any commonly used medication can increase expression of antiatherogenic reverse cholesterol transport proteins and can counteract the effects of COX-2 inhibition. Our results suggest that one mechanism by which MTX protects against cardiovascular disease in rheumatoid arthritis patients is through facilitation of cholesterol outflow from cells of the artery wall.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antirreumáticos/farmacologia , Colestanotriol 26-Mono-Oxigenase/genética , Células Espumosas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Metotrexato/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Células Cultivadas , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Interações Medicamentosas , Células Espumosas/citologia , Células Espumosas/metabolismo , Humanos , Interferon gama/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , RNA Mensageiro/metabolismo , Receptor A2A de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...