Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Diagnostics (Basel) ; 14(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732280

RESUMO

This study evaluated a deep neural network (DNN) algorithm for automated aortic diameter quantification and aortic dissection detection in chest computed tomography (CT). A total of 100 patients (median age: 67.0 [interquartile range 55.3/73.0] years; 60.0% male) with aortic aneurysm who underwent non-enhanced and contrast-enhanced electrocardiogram-gated chest CT were evaluated. All the DNN measurements were compared to manual assessment, overall and between the following subgroups: (1) ascending (AA) vs. descending aorta (DA); (2) non-obese vs. obese; (3) without vs. with aortic repair; (4) without vs. with aortic dissection. Furthermore, the presence of aortic dissection was determined (yes/no decision). The automated and manual diameters differed significantly (p < 0.05) but showed excellent correlation and agreement (r = 0.89; ICC = 0.94). The automated and manual values were similar in the AA group but significantly different in the DA group (p < 0.05), similar in obese but significantly different in non-obese patients (p < 0.05) and similar in patients without aortic repair or dissection but significantly different in cases with such pathological conditions (p < 0.05). However, in all the subgroups, the automated diameters showed strong correlation and agreement with the manual values (r > 0.84; ICC > 0.9). The accuracy, sensitivity and specificity of DNN-based aortic dissection detection were 92.1%, 88.1% and 95.7%, respectively. This DNN-based algorithm enabled accurate quantification of the largest aortic diameter and detection of aortic dissection in a heterogenous patient population with various aortic pathologies. This has the potential to enhance radiologists' efficiency in clinical practice.

2.
Comput Biol Med ; 174: 108464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613894

RESUMO

Pulmonary Embolisms (PE) represent a leading cause of cardiovascular death. While medical imaging, through computed tomographic pulmonary angiography (CTPA), represents the gold standard for PE diagnosis, it is still susceptible to misdiagnosis or significant diagnosis delays, which may be fatal for critical cases. Despite the recently demonstrated power of deep learning to bring a significant boost in performance in a wide range of medical imaging tasks, there are still very few published researches on automatic pulmonary embolism detection. Herein we introduce a deep learning based approach, which efficiently combines computer vision and deep neural networks for pulmonary embolism detection in CTPA. Our method brings novel contributions along three orthogonal axes: (1) automatic detection of anatomical structures; (2) anatomical aware pretraining, and (3) a dual-hop deep neural net for PE detection. We obtain state-of-the-art results on the publicly available multicenter large-scale RSNA dataset.


Assuntos
Angiografia por Tomografia Computadorizada , Aprendizado Profundo , Embolia Pulmonar , Embolia Pulmonar/diagnóstico por imagem , Humanos , Angiografia por Tomografia Computadorizada/métodos , Redes Neurais de Computação
4.
Eur J Radiol ; 168: 111093, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716024

RESUMO

PURPOSE/OBJECTIVE: Reliable detection of thoracic aortic dilatation (TAD) is mandatory in clinical routine. For ECG-gated CT angiography, automated deep learning (DL) algorithms are established for diameter measurements according to current guidelines. For non-ECG gated CT (contrast enhanced (CE) and non-CE), however, only a few reports are available. In these reports, classification as TAD is frequently unreliable with variable result quality depending on anatomic location with the aortic root presenting with the worst results. Therefore, this study aimed to explore the impact of re-training on a previously evaluated DL tool for aortic measurements in a cohort of non-ECG gated exams. METHODS & MATERIALS: A cohort of 995 patients (68 ± 12 years) with CE (n = 392) and non-CE (n = 603) chest CT exams was selected which were classified as TAD by the initial DL tool. The re-trained version featured improved robustness of centerline fitting and cross-sectional plane placement. All cases were processed by the re-trained DL tool version. DL results were evaluated by a radiologist regarding plane placement and diameter measurements. Measurements were classified as correctly measured diameters at each location whereas false measurements consisted of over-/under-estimation of diameters. RESULTS: We evaluated 8948 measurements in 995 exams. The re-trained version performed 8539/8948 (95.5%) of diameter measurements correctly. 3765/8948 (42.1%) of measurements were correct in both versions, initial and re-trained DL tool (best: distal arch 655/995 (66%), worst: Aortic sinus (AS) 221/995 (22%)). In contrast, 4456/8948 (49.8%) measurements were correctly measured only by the re-trained version, in particular at the aortic root (AS: 564/995 (57%), sinotubular junction: 697/995 (70%)). In addition, the re-trained version performed 318 (3.6%) measurements which were not available previously. A total of 228 (2.5%) cases showed false measurements because of tilted planes and 181 (2.0%) over-/under-segmentations with a focus at AS (n = 137 (14%) and n = 73 (7%), respectively). CONCLUSION: Re-training of the DL tool improved diameter assessment, resulting in a total of 95.5% correct measurements. Our data suggests that the re-trained DL tool can be applied even in non-ECG-gated chest CT including both, CE and non-CE exams.


Assuntos
Aprendizado Profundo , Humanos , Estudos Transversais , Tomografia Computadorizada por Raios X/métodos , Aorta , Algoritmos
5.
J Cardiovasc Comput Tomogr ; 17(5): 336-340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37612232

RESUMO

BACKGROUND: Accurate chamber volumetry from gated, non-contrast cardiac CT (NCCT) scans can be useful for potential screening of heart failure. OBJECTIVES: To validate a new, fully automated, AI-based method for cardiac volume and myocardial mass quantification from NCCT scans compared to contrasted CT Angiography (CCTA). METHODS: Of a retrospectively collected cohort of 1051 consecutive patients, 420 patients had both NCCT and CCTA scans at mid-diastolic phase, excluding patients with cardiac devices. Ground truth values were obtained from the CCTA scans. RESULTS: The NCCT volume computation shows good agreement with ground truth values. Volume differences [95% CI ] and correlation coefficients were: -9.6 [-45; 26] mL, r â€‹= â€‹0.98 for LV Total, -5.4 [-24; 13] mL, r â€‹= â€‹0.95 for LA, -8.7 [-45; 28] mL, r â€‹= â€‹0.94 for RV, -5.2 [-27; 17] mL, r â€‹= â€‹0.92 for RA, -3.2 [-42; 36] mL, r â€‹= â€‹0.91 for LV blood pool, and -6.7 [-39; 26] g, r â€‹= â€‹0.94 for LV wall mass, respectively. Mean relative volume errors of less than 7% were obtained for all chambers. CONCLUSIONS: Fully automated assessment of chamber volumes from NCCT scans is feasible and correlates well with volumes obtained from contrast study.


Assuntos
Angiografia por Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Humanos , Estudos Retrospectivos , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X/métodos , Angiografia por Tomografia Computadorizada/métodos , Inteligência Artificial
7.
Front Cardiovasc Med ; 9: 972512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072871

RESUMO

Purpose: Thoracic aortic (TA) dilatation (TAD) is a risk factor for acute aortic syndrome and must therefore be reported in every CT report. However, the complex anatomy of the thoracic aorta impedes TAD detection. We investigated the performance of a deep learning (DL) prototype as a secondary reading tool built to measure TA diameters in a large-scale cohort. Material and methods: Consecutive contrast-enhanced (CE) and non-CE chest CT exams with "normal" TA diameters according to their radiology reports were included. The DL-prototype (AIRad, Siemens Healthineers, Germany) measured the TA at nine locations according to AHA guidelines. Dilatation was defined as >45 mm at aortic sinus, sinotubular junction (STJ), ascending aorta (AA) and proximal arch and >40 mm from mid arch to abdominal aorta. A cardiovascular radiologist reviewed all cases with TAD according to AIRad. Multivariable logistic regression (MLR) was used to identify factors (demographics and scan parameters) associated with TAD classification by AIRad. Results: 18,243 CT scans (45.7% female) were successfully analyzed by AIRad. Mean age was 62.3 ± 15.9 years and 12,092 (66.3%) were CE scans. AIRad confirmed normal diameters in 17,239 exams (94.5%) and reported TAD in 1,004/18,243 exams (5.5%). Review confirmed TAD classification in 452/1,004 exams (45.0%, 2.5% total), 552 cases were false-positive but identification was easily possible using visual outputs by AIRad. MLR revealed that the following factors were significantly associated with correct TAD classification by AIRad: TAD reported at AA [odds ratio (OR): 1.12, p < 0.001] and STJ (OR: 1.09, p = 0.002), TAD found at >1 location (OR: 1.42, p = 0.008), in CE exams (OR: 2.1-3.1, p < 0.05), men (OR: 2.4, p = 0.003) and patients presenting with higher BMI (OR: 1.05, p = 0.01). Overall, 17,691/18,243 (97.0%) exams were correctly classified. Conclusions: AIRad correctly assessed the presence or absence of TAD in 17,691 exams (97%), including 452 cases with previously missed TAD independent from contrast protocol. These findings suggest its usefulness as a secondary reading tool by improving report quality and efficiency.

8.
Eur Heart J Cardiovasc Imaging ; 23(6): 846-854, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34322693

RESUMO

AIMS: To present and validate a fully automated, deep learning (DL)-based branch-wise coronary artery calcium (CAC) scoring algorithm on a multi-centre dataset. METHODS AND RESULTS: We retrospectively included 1171 patients referred for a CAC computed tomography examination. Total CAC scores for each case were manually evaluated by a human reader. Next, each dataset was fully automatically evaluated by the DL-based software solution with output of the total CAC score and sub-scores per coronary artery (CA) branch [right coronary artery (RCA), left main (LM), left anterior descending (LAD), and circumflex (CX)]. Three readers independently manually scored the CAC for all CA branches for 300 cases from a single centre and formed the consensus using a majority vote rule, serving as the reference standard. Established CAC cut-offs for the total Agatston score were used for risk group assignments. The performance of the algorithm was evaluated using metrics for risk class assignment based on total Agatston score, and unweighted Cohen's Kappa for branch label assignment. The DL-based software solution yielded a class accuracy of 93% (1085/1171) with a sensitivity, specificity, and accuracy of detecting non-zero coronary calcium being 97%, 93%, and 95%. The overall accuracy of the algorithm for branch label classification was 94% (LM: 89%, LAD: 91%, CX: 93%, RCA: 100%) with a Cohen's kappa of k = 0.91. CONCLUSION: Our results demonstrate that fully automated total and vessel-specific CAC scoring is feasible using a DL-based algorithm. There was a high agreement with the manually assessed total CAC from a multi-centre dataset and the vessel-specific scoring demonstrated consistent and reproducible results.


Assuntos
Doença da Artéria Coronariana , Aprendizado Profundo , Cálcio , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Estudos Retrospectivos
9.
Cardiovasc Eng Technol ; 13(1): 14-40, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34145556

RESUMO

PURPOSE: Coarctation of Aorta (CoA) is a congenital disease consisting of a narrowing that obstructs the systemic blood flow. This proof-of-concept study aimed to develop a framework for automatically and robustly personalizing aortic hemodynamic computations for the assessment of pre- and post-intervention CoA patients from 3D rotational angiography (3DRA) data. METHODS: We propose a framework that combines hemodynamic modelling and machine learning (ML) based techniques, and rely on 3DRA data for non-invasive pressure computation in CoA patients. The key features of our framework are a parameter estimation method for calibrating inlet and outlet boundary conditions, and regional mechanical wall properties, to ensure that the computational results match the patient-specific measurements, and an improved ML based pressure drop model capable of predicting the instantaneous pressure drop for a wide range of flow conditions and anatomical CoA variations. RESULTS: We evaluated the framework by investigating 6 patient datasets, under pre- and post-operative setting, and, since all calibration procedures converged successfully, the proposed approach is deemed robust. We compared the peak-to-peak and the cycle-averaged pressure drop computed using the reduced-order hemodynamic model with the catheter based measurements, before and after virtual and actual stenting. The mean absolute error for the peak-to-peak pressure drop, which is the most relevant measure for clinical decision making, was 2.98 mmHg for the pre- and 2.11 mmHg for the post-operative setting. Moreover, the proposed method is computationally efficient: the average execution time was of only [Formula: see text] minutes on a standard hardware configuration. CONCLUSION: The use of 3DRA for hemodynamic modelling could allow for a complete hemodynamic assessment, as well as virtual interventions or surgeries and predictive modeling. However, before such an approach can be used routinely, significant advancements are required for automating the workflow.


Assuntos
Coartação Aórtica , Humanos , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/cirurgia , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Angiografia por Ressonância Magnética/métodos , Modelos Cardiovasculares
10.
Acad Radiol ; 29 Suppl 2: S108-S117, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33714665

RESUMO

RATIONALE AND OBJECTIVES: Research on implementation of artificial intelligence (AI) in radiology workflows and its impact on reports remains scarce. In this study, we aim to assess if an AI platform would perform better than clinical radiology reports in evaluating noncontrast chest computed tomography (CT) scans. MATERIALS AND METHODS: Consecutive patients who had undergone noncontrast chest CT were retrospectively identified. The radiology reports were reviewed in a binary fashion for reporting of pulmonary lesions, pulmonary emphysema, aortic dilatation, coronary artery calcifications (CAC), and vertebral compression fractures (VCF). CT scans were then processed using an AI platform. The reports' findings and the AI results were subsequently compared to a consensus read by two board-certificated radiologists as reference. RESULTS: A total of 100 patients (mean age: 64.2 ± 14.8 years; 57% males) were included in this study. Aortic segmentation and calcium quantification failed to be processed by AI in 2 and 3 cases, respectively. AI showed superior diagnostic performance in identifying aortic dilatation (AI: sensitivity: 96.3%, specificity: 81.4%, AUC: 0.89) vs (Reports: sensitivity: 25.9%, specificity: 100%, AUC: 0.63), p <0.001; and CAC (AI: sensitivity: 89.8%, specificity: 100, AUC: 0.95) vs (Reports: sensitivity: 75.4%, specificity: 94.9%, AUC: 0.85), p = 0.005. Reports had better performance than AI in identifying pulmonary lesions (Reports: sensitivity: 97.6%, specificity: 100%, AUC: 0.99) vs (AI: sensitivity: 92.8%, specificity: 82.4%, AUC: 0.88), p = 0.024; and VCF (Reports: sensitivity:100%, specificity: 100%, AUC: 1.0) vs (AI: sensitivity: 100%, specificity: 63.7%, AUC: 0.82), p <0.001. A comparable diagnostic performance was noted in identifying pulmonary emphysema on AI (sensitivity: 80.6%, specificity: 66.7%. AUC: 0.74) and reports (sensitivity: 74.2%, specificity: 97.1%, AUC: 0.86), p = 0.064. CONCLUSION: Our results demonstrate that incorporating AI support platforms into radiology workflows can provide significant added value to clinical radiology reporting.


Assuntos
Fraturas por Compressão , Radiologia , Fraturas da Coluna Vertebral , Idoso , Inteligência Artificial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
11.
BMC Med ; 19(1): 55, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658025

RESUMO

BACKGROUND: Artificial intelligence (AI) in diagnostic radiology is undergoing rapid development. Its potential utility to improve diagnostic performance for cardiopulmonary events is widely recognized, but the accuracy and precision have yet to be demonstrated in the context of current screening modalities. Here, we present findings on the performance of an AI convolutional neural network (CNN) prototype (AI-RAD Companion, Siemens Healthineers) that automatically detects pulmonary nodules and quantifies coronary artery calcium volume (CACV) on low-dose chest CT (LDCT), and compare results to expert radiologists. We also correlate AI findings with adverse cardiopulmonary outcomes in a retrospective cohort of 117 patients who underwent LDCT. METHODS: A total of 117 patients were enrolled in this study. Two CNNs were used to identify lung nodules and CACV on LDCT scans. All subjects were used for lung nodule analysis, and 96 subjects met the criteria for coronary artery calcium volume analysis. Interobserver concordance was measured using ICC and Cohen's kappa. Multivariate logistic regression and partial least squares regression were used for outcomes analysis. RESULTS: Agreement of the AI findings with experts was excellent (CACV ICC = 0.904, lung nodules Cohen's kappa = 0.846) with high sensitivity and specificity (CACV: sensitivity = .929, specificity = .960; lung nodules: sensitivity = 1, specificity = 0.708). The AI findings improved the prediction of major cardiopulmonary outcomes at 1-year follow-up including major adverse cardiac events and lung cancer (AUCMACE = 0.911, AUCLung Cancer = 0.942). CONCLUSION: We conclude the AI prototype rapidly and accurately identifies significant risk factors for cardiopulmonary disease on standard screening low-dose chest CT. This information can be used to improve diagnostic ability, facilitate intervention, improve morbidity and mortality, and decrease healthcare costs. There is also potential application in countries with limited numbers of cardiothoracic radiologists.


Assuntos
Inteligência Artificial/normas , Cálcio/metabolismo , Vasos Coronários/fisiopatologia , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Estudos de Coortes , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Prognóstico , Estudos Retrospectivos
12.
Korean J Radiol ; 22(6): 994-1004, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33686818

RESUMO

OBJECTIVE: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management. MATERIALS AND METHODS: All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory findings, and demographics between the patient management groups were assessed. The potential of these parameters to predict patients' needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans. RESULTS: While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 0.79-0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77-0.94) were good classifiers. Excellent performance was achieved by a combination of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85-0.98). Application of a model that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its external validity (AUC = 0.77; 95% CI = 0.66-0.88). CONCLUSION: Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image analysis. These metrics are useful for the prediction of patient management.


Assuntos
COVID-19/diagnóstico , Aprendizado Profundo , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Automação , COVID-19/diagnóstico por imagem , COVID-19/virologia , Feminino , Humanos , Modelos Logísticos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , SARS-CoV-2/isolamento & purificação , Adulto Jovem
13.
Eur J Radiol ; 134: 109428, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285350

RESUMO

PURPOSE: To evaluate deep-learning based calcium quantification on Chest CT scans compared with manual evaluation, and to enable interpretation in terms of the traditional Agatston score on dedicated Cardiac CT. METHODS: Automated calcium quantification was performed using a combination of deep-learning convolution neural networks with a ResNet-architecture for image features and a fully connected neural network for spatial coordinate features. Calcifications were identified automatically, after which the algorithm automatically excluded all non-coronary calcifications using coronary probability maps and aortic segmentation. The algorithm was first trained on cardiac-CTs and refined on non-triggered chest-CTs. This study used on 95 patients (cohort 1), who underwent both dedicated calcium scoring and chest-CT acquisitions using the Agatston score as reference standard and 168 patients (cohort 2) who underwent chest-CT only using qualitative expert assessment for external validation. Results from the deep-learning model were compared to Agatston-scores(cardiac-CTs) and manually determined calcium volumes(chest-CTs) and risk classifications. RESULTS: In cohort 1, the Agatston score and AI determined calcium volume shows high correlation with a correlation coefficient of 0.921(p < 0.001) and R2 of 0.91. According to the Agatston categories, a total of 67(70 %) were correctly classified with a sensitivity of 91 % and specificity of 92 % in detecting presence of coronary calcifications. Manual determined calcium volume on chest-CT showed excellent correlation with the AI volumes with a correlation coefficient of 0.923(p < 0.001) and R2 of 0.96, no significant difference was found (p = 0.247). According to qualitative risk classifications in cohort 2, 138(82 %) cases were correctly classified with a k-coefficient of 0.74, representing good agreement. All wrongly classified scans (30(18 %)) were attributed to an adjacent category. CONCLUSION: Artificial intelligence based calcium quantification on chest-CTs shows good correlation compared to reference standards. Fully automating this process may reduce evaluation time and potentially optimize clinical calcium scoring without additional acquisitions.


Assuntos
Cálcio , Doença da Artéria Coronariana , Inteligência Artificial , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
14.
Curr Cardiol Rep ; 22(9): 90, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647932

RESUMO

PURPOSE OF REVIEW: To summarize current artificial intelligence (AI)-based applications for coronary artery calcium scoring (CACS) and their potential clinical impact. RECENT FINDINGS: Recent evolution of AI-based technologies in medical imaging has accelerated progress in CACS performed in diverse types of CT examinations, providing promising results for future clinical application in this field. CACS plays a key role in risk stratification of coronary artery disease (CAD) and patient management. Recent emergence of AI algorithms, particularly deep learning (DL)-based applications, have provided considerable progress in CACS. Many investigations have focused on the clinical role of DL models in CACS and showed excellent agreement between those algorithms and manual scoring, not only in dedicated coronary calcium CT but also in coronary CT angiography (CCTA), low-dose chest CT, and standard chest CT. Therefore, the potential of AI-based CACS may become more influential in the future.


Assuntos
Doença da Artéria Coronariana , Calcificação Vascular , Inteligência Artificial , Cálcio , Angiografia Coronária , Vasos Coronários , Humanos , Aprendizado de Máquina , Valor Preditivo dos Testes
15.
Comput Math Methods Med ; 2020: 5954617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655681

RESUMO

In recent years, computational fluid dynamics (CFD) has become a valuable tool for investigating hemodynamics in cerebral aneurysms. CFD provides flow-related quantities, which have been shown to have a potential impact on aneurysm growth and risk of rupture. However, the adoption of CFD tools in clinical settings is currently limited by the high computational cost and the engineering expertise required for employing these tools, e.g., for mesh generation, appropriate choice of spatial and temporal resolution, and of boundary conditions. Herein, we address these challenges by introducing a practical and robust methodology, focusing on computational performance and minimizing user interaction through automated parameter selection. We propose a fully automated pipeline that covers the steps from a patient-specific anatomical model to results, based on a fast, graphics processing unit- (GPU-) accelerated CFD solver and a parameter selection methodology. We use a reduced order model to compute the initial estimates of the spatial and temporal resolutions and an iterative approach that further adjusts the resolution during the simulation without user interaction. The pipeline and the solver are validated based on previously published results, and by comparing the results obtained for 20 cerebral aneurysm cases with those generated by a state-of-the-art commercial solver (Ansys CFX, Canonsburg PA). The automatically selected spatial and temporal resolutions lead to results which closely agree with the state-of-the-art, with an average relative difference of only 2%. Due to the GPU-based parallelization, simulations are computationally efficient, with a median computation time of 40 minutes per simulation.


Assuntos
Hemodinâmica/fisiologia , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/fisiopatologia , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Biologia Computacional , Simulação por Computador , Humanos , Hidrodinâmica , Imageamento Tridimensional , Modelagem Computacional Específica para o Paciente , Fluxo de Trabalho
17.
Stroke ; 51(2): 641-643, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31813355

RESUMO

Background and Purpose- Therapeutic decision making for small unruptured intracranial aneurysms (<10 mm) is difficult. We aimed to develop a rupture risk model for small intracranial aneurysms in Japanese adults, including clinical, morphological, and hemodynamic parameters. Methods- We analyzed 338 small unruptured aneurysms; 35 ruptured during the observation period, and 303 remained stable. Clinical, morphological, and hemodynamic parameters were considered. Computational fluid dynamics was used to calculate hemodynamic parameters based on computed tomography images of all aneurysms in their unruptured state. Differences between the ruptured and unruptured groups were tested by the Mann-Whitney U or Fisher exact tests. Multivariate logistic regression was applied to obtain a rupture risk model. Its predictive ability was investigated by receiver operating characteristic analysis. Results- The risk model revealed that rupture may be more likely to in younger patients (odds ratio [OR], 0.92 for each age increase of 1 year [95% CI, 0.88-0.96] P<0.001) with multiple aneurysms (OR, 2.58 [95% CI, 1.07-6.19] P=0.03), located at a bifurcation (OR, 5.45 [95% CI, 1.87-15.85] P=0.002), with a bleb (OR, 4.09 [95% CI, 1.42-11.79] P=0.009), larger length (OR, 1.91 for each increase of 1 mm [95% CI, 1.42-2.57] P<0.001), and lower pressure loss coefficient (OR, 0.33 for each decrease of 1 unit [95% CI, 0.14-0.77] P=0.01). The sensitivity, specificity, and area under the curve were 0.800, 0.752, and 0.826 (95% CI, 0.739-0.914) respectively. Conclusions- Younger age, presence of multiple aneurysms, location at a bifurcation, presence of a bleb, larger length, and lower pressure loss coefficient were identified as risk factors for rupture of small intracranial aneurysms. The risk model should be validated in further studies.


Assuntos
Aneurisma Roto/complicações , Aneurisma Roto/etiologia , Hemodinâmica/fisiologia , Aneurisma Intracraniano/complicações , Adulto , Fatores Etários , Idoso , Angiografia Cerebral/métodos , Feminino , Humanos , Aneurisma Intracraniano/etiologia , Japão , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Fatores de Risco
19.
Cardiovasc Eng Technol ; 9(4): 544-564, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30203115

RESUMO

PURPOSE: Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline. METHODS: 3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods, boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters. RESULTS: A total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability. CONCLUSIONS: Wide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.


Assuntos
Angiografia Cerebral/métodos , Circulação Cerebrovascular , Hemodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Artéria Cerebral Média/diagnóstico por imagem , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Velocidade do Fluxo Sanguíneo , Humanos , Imageamento Tridimensional , Aneurisma Intracraniano/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Interpretação de Imagem Radiográfica Assistida por Computador , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Estresse Mecânico
20.
Circ Cardiovasc Imaging ; 11(6): e007217, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29914866

RESUMO

BACKGROUND: Coronary computed tomographic angiography (CTA) is a reliable modality to detect coronary artery disease. However, CTA generally overestimates stenosis severity compared with invasive angiography, and angiographic stenosis does not necessarily imply hemodynamic relevance when fractional flow reserve (FFR) is used as reference. CTA-based FFR (CT-FFR), using computational fluid dynamics (CFD), improves the correlation with invasive FFR results but is computationally demanding. More recently, a new machine-learning (ML) CT-FFR algorithm has been developed based on a deep learning model, which can be performed on a regular workstation. In this large multicenter cohort, the diagnostic performance ML-based CT-FFR was compared with CTA and CFD-based CT-FFR for detection of functionally obstructive coronary artery disease. METHODS AND RESULTS: At 5 centers in Europe, Asia, and the United States, 351 patients, including 525 vessels with invasive FFR comparison, were included. ML-based and CFD-based CT-FFR were performed on the CTA data, and diagnostic performance was evaluated using invasive FFR as reference. Correlation between ML-based and CFD-based CT-FFR was excellent (R=0.997). ML-based (area under curve, 0.84) and CFD-based CT-FFR (0.84) outperformed visual CTA (0.69; P<0.0001). On a per-vessel basis, diagnostic accuracy improved from 58% (95% confidence interval, 54%-63%) by CTA to 78% (75%-82%) by ML-based CT-FFR. The per-patient accuracy improved from 71% (66%-76%) by CTA to 85% (81%-89%) by adding ML-based CT-FFR as 62 of 85 (73%) false-positive CTA results could be correctly reclassified by adding ML-based CT-FFR. CONCLUSIONS: On-site CT-FFR based on ML improves the performance of CTA by correctly reclassifying hemodynamically nonsignificant stenosis and performs equally well as CFD-based CT-FFR.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Estenose Coronária/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Aprendizado Profundo , Reserva Fracionada de Fluxo Miocárdico , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Idoso , Ásia , Doença da Artéria Coronariana/fisiopatologia , Estenose Coronária/fisiopatologia , Vasos Coronários/fisiopatologia , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Índice de Gravidade de Doença , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...