Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(1): 013319, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012530

RESUMO

To investigate the chiral magnetic effect, 96Zr and 96Ru beams were accelerated at the relativistic heavy ion collider (RHIC) during Run-18 at Brookhaven National Laboratory. The 96Zr beam was provided from the electron beam ion source (EBIS) injector, which consists of a laser ion source, an EBIS high charge state ion breeder, a 300 keV/u radio frequency quadrupole, and a 2 MeV/u interdigital H type drift tube linear accelerator (IH-DTL). The natural abundance of 96Zr is only 2.8% with about 50% of 90Zr. To obtain a sufficient beam current, Zr material enriched to about 60% of 96Zr was used. The only available form of the enriched material was zirconium oxide (ZrO2) powder, which was not well suited for a laser ion source target. We studied and established a sintering technique of the ZrO2 powder to make a solid sample which could be installed into the laser ion source. The singly charged Zr was produced in a laser ablation plasma, extracted, and delivered to the EBIS to be ionized further to 96Zr16+. We optimized the laser irradiation condition, the EBIS confinement time, and transport through the RF linacs to maximize the performance of the injector. The total number of shots provided from the laser ion source for injection into the EBIS was 489 910. The EBIS facility provided a 192 MeV stable beam of 96Zr16+ ions to the booster ring of alternating gradient synchrotron (AGS) for further acceleration and stripping in the AGS/RHIC complex, allowing for successful data acquisition at the Solenoidal Tracker at the RHIC.

2.
Rev Sci Instrum ; 89(5): 052002, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864803

RESUMO

There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.

3.
Rev Sci Instrum ; 87(2): 02B705, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932068

RESUMO

A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

4.
Rev Sci Instrum ; 87(2): 02B935, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932107

RESUMO

The H(-) magnetron source provides about 100 mA H(-) beam to be match into the radio-frequency quadrupole accelerator. As H(-) beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H(-) beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H(-) beam from optically pumped polarized ion source.

5.
Rev Sci Instrum ; 84(3): 033303, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23556811

RESUMO

Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

6.
Rev Sci Instrum ; 83(2): 02A504, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380200

RESUMO

RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

7.
Rev Sci Instrum ; 81(2): 02A509, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192364

RESUMO

As part of a new heavy ion preinjector that will supply beams for the Relativistic Heavy Ion Collider and the National Aeronautics and Space Administration Space Radiation Laboratory, construction of a new electron beam ion source (EBIS) is now being completed. This source, based on the successful prototype Brookhaven National Laboratory Test EBIS, is designed to produce milliampere level currents of all ion species, with q/m=(1/6)-(1/2). Among the major components of this source are a 5 T, 2-m-long, 204 mm diameter warm bore superconducting solenoid, an electron gun designed to operate at a nominal current of 10 A, and an electron collector designed to dissipate approximately 300 kW of peak power. Careful attention has been paid to the design of the vacuum system, since a pressure of 10(-10) Torr is required in the trap region. The source includes several differential pumping stages, the trap can be baked to 400 C, and there are non-evaporable getter strips in the trap region. Power supplies include a 15 A, 15 kV electron collector power supply, and fast switchable power supplies for most of the 16 electrodes used for varying the trap potential distribution for ion injection, confinement, and extraction. The EBIS source and all EBIS power supplies sit on an isolated platform, which is pulsed up to a maximum of 100 kV during ion extraction. The EBIS is now fully assembled, and operation will be beginning following final vacuum and power supply tests. Details of the EBIS components are presented.

8.
Rev Sci Instrum ; 79(2 Pt 2): 02B908, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315223

RESUMO

The efficiency of trapping ions in an electron-beam ion source (EBIS) is of primary importance for many applications requiring operations with externally produced ions: RIA breeders, ion sources, and traps. At the present time, the most popular method of ion injection is pulsed injection, when short bunches of ions get trapped in a longitudinal trap while traversing the trap region. Continuous trapping is a challenge for EBIS devices because mechanisms which reduce the longitudinal ion energy per charge in a trap (cooling with residual gas, energy exchange with other ions, and ionization) are not very effective, and accumulation of ions is slow. A possible approach to increase trapping efficiency is to slant the mirror at the end of the trap which is opposite to the injection end. A slanted mirror will convert longitudinal motion of ions into transverse motion, and, by reducing their longitudinal velocity, prevent these ions from escaping the trap on their way out. The trade-off for the increased trapping efficiency this way is an increase in the initial transverse energy of the accumulated ions. The slanted mirror can be realized if the ends of two adjacent electrodes, drift tubes, which act as an electrostatic mirror, are machined to produce a slanted gap, rather than an upright one. Applying different voltages to these electrodes will produce a slanted mirror. The results of two-dimensional (2D) and three-dimensional (3D) computer simulations of the ion injection into an EBIS are presented using simplified models of an EBIS with conical (2D simulations) and slanted (3D simulations) mirror electrodes.

9.
Med Phys ; 25(9): 1735-8, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9775380

RESUMO

Two acrylic cube phantoms have been constructed for BNCT applications that allow the depth distribution of neutrons to be measured with miniature 10BF3 detectors in 0.5-cm steps beginning at 1-cm depth. Sizes and weights of the cubes are 14 cm, 3.230 kg, and 11 cm, 1.567 kg. Tests were made with the epithermal neutron beam from the patient treatment port of the Brookhaven Medical Research Reactor. Thermal neutron depth profiles were measured with a bare 10BF3 detector at a reactor power of 50 W, and Cd-covered detector profiles were measured at a reactor power of 1 kW. The resulting plots of counting rate versus depth illustrate the dependence of neutron moderation on the size of the phantom. But more importantly the data can serve as benchmarks for testing the thermal and epithermal neutron profiles obtained with accelerator-based BNCT facilities. Such tests could be made with these phantoms at power levels about five orders of magnitude lower than that required for the treatment of patients with brain tumors.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro/instrumentação , Imagens de Fantasmas , Fenômenos Biofísicos , Biofísica , Boro , Neoplasias Encefálicas/radioterapia , Desenho de Equipamento , Nêutrons Rápidos/uso terapêutico , Humanos , Isótopos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA