Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnol Sci Appl ; 16: 19-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106675

RESUMO

Purpose: We report an innovative green nanotechnology utilizing an electron-rich cocktail of phytochemicals from Yucca filamentosa L. to synthesize biocompatible gold nanoparticles without the use of any external chemical reducing agents and evaluate their anti-cancer activity. Methods: Yucca filamentosa L. extract, containing a cocktail of phytochemicals, was prepared, and used to transform gold salt into Y. filamentosa phytochemicals encapsulated gold nanoparticles (YF-AuNPs). Additionally, gum arabic stabilized YF-AuNPs (GAYF-AuNPs) were also prepared to enhance the in vitro/in vivo stability. Anticancer activity was evaluated against prostate (PC-3) and breast (MDAMB-231) cancer cell lines. Targeting abilities of gold nanoparticles were tested using pro-tumor macrophage cell lines. Results: Comprehensive characterization of new nanomedicine agents YF-AuNPs and GAYF-AuNPs revealed spherical, and monodisperse AuNPs with moderate zeta potentials (-19 and -20 mV, respectively), indicating in vitro/in vivo stability. The core size of YF-AuNPs (14 ± 5 nm) and GAYF-AuNPs (10 ± 5 nm) is suitable for optimal penetration into tumor cells through both enhanced permeability and retention (EPR) effect as well as through the receptor mediated endocytosis. Notably, YF-AuNPs exhibited potent anticancer activity against prostate (PC-3) and breast tumors (MDAMB-231) by inducing early and late apoptotic stages. Moreover, YF-AuNPs resulted in elevated levels of anti-tumor cytokines (TNF-α and IL-12) and reduced levels of pro-tumor cytokines (IL-6 and IL-10), provide compelling evidence on the immunomodulatory property of YF-AuNPs. Conclusion: Overall, these Y. filamentosa phytochemicals functionalized nano-Ayurvedic medicine agents demonstrated selective toxicity to cancer cells while sparing normal cells. Most notably, to our knowledge, this is the first study that shows YF-AuNP's targeting efficacy toward pro-tumor macrophage cell lines, suggesting an immunomodulatory pathway for cancer treatment. This work introduces a novel avenue for herbal and nano-Ayurvedic approaches to human cancer treatment, mediated through selective efficacy and immunomodulatory potential.

2.
Int J Nanomedicine ; 15: 7359-7376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061384

RESUMO

INTRODUCTION: We report, herein, in vitro, and in vivo toxicity evaluation of silver nanoparticles stabilized with gum arabic protein (AgNP-GP) in Daphnia similis, Danio rerio embryos and in Sprague Dawley rats. PURPOSE: The objective of this investigation was to evaluate in vitro and in vivo toxicity of silver nanoparticles stabilized with gum arabic protein (AgNP-GP), in multispecies due to the recognition that toxicity evaluations beyond a single species reflect the environmental realism. In the present study, AgNP-GP was synthesized through the reduction of silver salt using the tri-alanine-phosphine peptide (commonly referred to as "Katti Peptide") and stabilized using gum arabic protein. METHODS: In vitro cytotoxicity tests were performed according to ISO 10993-5 protocols to assess cytotoxicity index (IC50) values. Acute ecotoxicity (EC50) studies were performed using Daphnia similis, according to the ABNT NBR 15088 protocols. In vivo toxicity also included evaluation of acute embryotoxicity using Danio rerio (zebrafish) embryos following the OECD No. 236 guidelines. We also used Sprague Dawley rats to assess the toxicity of AgNP-GP in doses from 2.5 to 10.0 mg kg-1 body weight. RESULTS: AgNP-GP nanoparticles were characterized through UV (405 nm), core size (20±5 nm through TEM), hydrodynamic size (70-80 nm), Zeta (ζ) potential (- 26 mV) using DLS and Powder X ray diffraction (PXRD) and EDS. PXRD showed pattern consistent with the Ag (1 1 1) peak. EC50 in Daphnia similis was 4.40 (3.59-5.40) µg L-1. In the zebrafish species, LC50 was 177 µg L-1. Oral administration of AgNP-GP in Sprague Dawley rats for a period of 28 days revealed no adverse effects in doses of up to 10.0 mg kg-1 b.w. in both male and female animals. CONCLUSION: The non-toxicity of AgNP-GP in rats offers a myriad of applications of AgNP-GP in health and hygiene for use as antibiotics, antimicrobial and antifungal agents.


Assuntos
Daphnia/efeitos dos fármacos , Goma Arábica/química , Nanopartículas Metálicas/toxicidade , Prata/química , Peixe-Zebra/embriologia , Animais , Ecotoxicologia/métodos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Dose Letal Mediana , Masculino , Nanopartículas Metálicas/química , Proteínas de Plantas/química , Ratos Sprague-Dawley , Especificidade da Espécie , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
3.
Int J Nanomedicine ; 14: 4413-4428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417252

RESUMO

Background: As part of our continuing quest to enhance the efficacy of bioactive phytochemicals in cancer therapy, we report an innovative green nanotechnology approach toward the use of resveratrol for the production of biocompatible resveratrol-conjugated gold nanoparticles (Res-AuNPs). Our overarching aim is to exploit the inherent pro-apoptotic properties of gold nanoparticles (AuNPs) through synergistic anti-tumor characteristics of resveratrol, with the aim of developing a new class of green nanotechnology-based phytochemical-embedded AuNPs for applications in oncology. Method: Resveratrol was used to reduce Au3+ to Au0 for the synthesis of Res-AuNPs at room temperature and gum arabic (GA) was used to further encapsulate the nanoparticulate surface to increase the overall stability of the AuNPs. This comprehensive study involves the synthesis, full characterization and in vitro stability of Res-AuNPs in various biological media for their ultimate applications as anti-cancer agents against human breast (MDAMB-231), pancreatic (PANC-1) and prostate (PC-3) cancers. Results: This strategy to systematically increase the corona of resveratrol on AuNPs, in order to gain insights into the interrelationship of the phytochemical corona on the overall anti-tumor activities of Res-AuNPs, proved successful. The increased resveratrol corona on Res-AuNPs showed superior anti-cancer effects, attributed to an optimal cellular uptake after 24-hour incubation, while GA provided a protein matrix support for enhanced trans-resveratrol loading onto the surface of the AuNPs. Conclusion: The approach described in this study harnesses the benefits of nutraceuticals and nanoparticles toward the development of Res-AuNPs. We provide compelling evidence that the increased corona of resveratrol on AuNPs enhances the bioavailability of resveratrol so that therapeutically active species can be optimally available in vivo for applications in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Ouro/química , Nanopartículas Metálicas/química , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/patologia , Resveratrol/farmacologia , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endocitose , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Polifenóis/química , Polifenóis/farmacologia , Resveratrol/química , Espectrofotometria Ultravioleta , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...