Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 94: 102860, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32739133

RESUMO

UV-damaged DNA binding protein (UV-DDB) is a heterodimeric complex, composed of DDB1 and DDB2, and is involved in global genome nucleotide excision repair. Mutations in DDB2 are associated with xeroderma pigmentosum complementation group E. UV-DDB forms a ubiquitin E3 ligase complex with cullin-4A and RBX that helps to relax chromatin around UV-induced photoproducts through the ubiquitination of histone H2A. After providing a brief historical perspective on UV-DDB, we review our current knowledge of the structure and function of this intriguing repair protein. Finally, this article discusses emerging data suggesting that UV-DDB may have other non-canonical roles in base excision repair and the etiology of cancer.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo
2.
Nat Struct Mol Biol ; 26(8): 695-703, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332353

RESUMO

UV-DDB, a key protein in human global nucleotide excision repair (NER), binds avidly to abasic sites and 8-oxo-guanine (8-oxoG), suggesting a noncanonical role in base excision repair (BER). We investigated whether UV-DDB can stimulate BER for these two common forms of DNA damage, 8-oxoG and abasic sites, which are repaired by 8-oxoguanine glycosylase (OGG1) and apurinic/apyrimidinic endonuclease (APE1), respectively. UV-DDB increased both OGG1 and APE1 strand cleavage and stimulated subsequent DNA polymerase ß-gap filling activity by 30-fold. Single-molecule real-time imaging revealed that UV-DDB forms transient complexes with OGG1 or APE1, facilitating their dissociation from DNA. Furthermore, UV-DDB moves to sites of 8-oxoG repair in cells, and UV-DDB depletion sensitizes cells to oxidative DNA damage. We propose that UV-DDB is a general sensor of DNA damage in both NER and BER pathways, facilitating damage recognition in the context of chromatin.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Linhagem Celular , Dano ao DNA , DNA Glicosilases/química , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Dímeros de Pirimidina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula , Especificidade por Substrato , Xeroderma Pigmentoso/patologia
3.
Proc Natl Acad Sci U S A ; 111(18): E1862-71, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24760829

RESUMO

How human DNA repair proteins survey the genome for UV-induced photoproducts remains a poorly understood aspect of the initial damage recognition step in nucleotide excision repair (NER). To understand this process, we performed single-molecule experiments, which revealed that the human UV-damaged DNA-binding protein (UV-DDB) performs a 3D search mechanism and displays a remarkable heterogeneity in the kinetics of damage recognition. Our results indicate that UV-DDB examines sites on DNA in discrete steps before forming long-lived, nonmotile UV-DDB dimers (DDB1-DDB2)2 at sites of damage. Analysis of the rates of dissociation for the transient binding molecules on both undamaged and damaged DNA show multiple dwell times over three orders of magnitude: 0.3-0.8, 8.1, and 113-126 s. These intermediate states are believed to represent discrete UV-DDB conformers on the trajectory to stable damage detection. DNA damage promoted the formation of highly stable dimers lasting for at least 15 min. The xeroderma pigmentosum group E (XP-E) causing K244E mutant of DDB2 found in patient XP82TO, supported UV-DDB dimerization but was found to slide on DNA and failed to stably engage lesions. These findings provide molecular insight into the loss of damage discrimination observed in this XP-E patient. This study proposes that UV-DDB recognizes lesions via multiple kinetic intermediates, through a conformational proofreading mechanism.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Substituição de Aminoácidos , DNA/química , Dano ao DNA , Proteínas de Ligação a DNA/genética , Humanos , Cinética , Microscopia de Fluorescência , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Concentração Osmolar , Conformação Proteica , Multimerização Proteica , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/efeitos da radiação , Pontos Quânticos , Raios Ultravioleta/efeitos adversos , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo
4.
PLoS One ; 9(1): e84899, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454762

RESUMO

During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endopeptidases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/deficiência , Endopeptidases/genética , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Recombinação Homóloga/efeitos da radiação , Humanos , Cinética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Raios X/efeitos adversos
5.
Protein Expr Purif ; 87(2): 111-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23137940

RESUMO

Expression of recombinant proteins in bacterial or eukaryotic systems often results in aggregation rendering them unavailable for biochemical or structural studies. Protein aggregation is a costly problem for biomedical research. It forces research laboratories and the biomedical industry to search for alternative, more soluble, non-human proteins and limits the number of potential "druggable" targets. In this study we present a highly reproducible protocol that introduces the systematic use of an extensive number of detergents to solubilize aggregated proteins expressed in bacterial and eukaryotic systems. We validate the usefulness of this protocol by solubilizing traditionally difficult human protein targets to milligram quantities and confirm their biological activity. We use this method to solubilize monomeric or multimeric components of multi-protein complexes and demonstrate its efficacy to reconstitute large cellular machines. This protocol works equally well on cytosolic, nuclear and membrane proteins and can be easily adapted to a high throughput format.


Assuntos
Biotecnologia/métodos , Detergentes/química , Proteínas de Membrana/isolamento & purificação , Complexos Multiproteicos/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Proteínas de Membrana/química , Complexos Multiproteicos/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae , Células Sf9 , Solubilidade
6.
Proc Natl Acad Sci U S A ; 109(41): E2737-46, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22822215

RESUMO

UV light-induced photoproducts are recognized and removed by the nucleotide-excision repair (NER) pathway. In humans, the UV-damaged DNA-binding protein (UV-DDB) is part of a ubiquitin E3 ligase complex (DDB1-CUL4A(DDB2)) that initiates NER by recognizing damaged chromatin with concomitant ubiquitination of core histones at the lesion. We report the X-ray crystal structure of the human UV-DDB in a complex with damaged DNA and show that the N-terminal domain of DDB2 makes critical contacts with two molecules of DNA, driving N-terminal-domain folding and promoting UV-DDB dimerization. The functional significance of the dimeric UV-DDB [(DDB1-DDB2)(2)], in a complex with damaged DNA, is validated by electron microscopy, atomic force microscopy, solution biophysical, and functional analyses. We propose that the binding of UV-damaged DNA results in conformational changes in the N-terminal domain of DDB2, inducing helical folding in the context of the bound DNA and inducing dimerization as a function of nucleotide binding. The temporal and spatial interplay between domain ordering and dimerization provides an elegant molecular rationale for the unprecedented binding affinities and selectivities exhibited by UV-DDB for UV-damaged DNA. Modeling the DDB1-CUL4A(DDB2) complex according to the dimeric UV-DDB-AP24 architecture results in a mechanistically consistent alignment of the E3 ligase bound to a nucleosome harboring damaged DNA. Our findings provide unique structural and conformational insights into the molecular architecture of the DDB1-CUL4A(DDB2) E3 ligase, with significant implications for the regulation and overall organization of the proteins responsible for initiation of NER in the context of chromatin and for the consequent maintenance of genomic integrity.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/química , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cristalografia por Raios X , Proteínas Culina/química , Proteínas Culina/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Conformação de Ácido Nucleico , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
J Biol Chem ; 287(15): 12036-49, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22334663

RESUMO

How the nucleotide excision repair (NER) machinery gains access to damaged chromatinized DNA templates and how the chromatin structure is modified to promote efficient repair of the non-transcribed genome remain poorly understood. The UV-damaged DNA-binding protein complex (UV-DDB, consisting of DDB1 and DDB2, the latter of which is mutated in xeroderma pigmentosum group E patients, is a substrate-recruiting module of the cullin 4B-based E3 ligase complex, DDB1-CUL4B(DDB2). We previously reported that the deficiency of UV-DDB E3 ligases in ubiquitinating histone H2A at UV-damaged DNA sites in the xeroderma pigmentosum group E cells contributes to the faulty NER in these skin cancer-prone patients. Here, we reveal the mechanism by which monoubiquitination of specific H2A lysine residues alters nucleosomal dynamics and subsequently initiates NER. We show that DDB1-CUL4B(DDB2) E3 ligase specifically binds to mononucleosomes assembled with human recombinant histone octamers and nucleosome-positioning DNA containing cyclobutane pyrimidine dimers or 6-4 photoproducts photolesions. We demonstrate functionally that ubiquitination of H2A Lys-119/Lys-120 is necessary for destabilization of nucleosomes and concomitant release of DDB1-CUL4B(DDB2) from photolesion-containing DNA. Nucleosomes in which these lysines are replaced with arginines are resistant to such structural changes, and arginine mutants prevent the eviction of H2A and dissociation of polyubiquitinated DDB2 from UV-damaged nucleosomes. The partial eviction of H3 from the nucleosomes is dependent on ubiquitinated H2A Lys-119/Lys-120. Our results provide mechanistic insight into how post-translational modification of H2A at the site of a photolesion initiates the repair process and directly affects the stability of the human genome.


Assuntos
Histonas/química , Nucleossomos/química , Ubiquitina-Proteína Ligases/química , Proteínas Ubiquitinadas/química , Raios Ultravioleta , Substituição de Aminoácidos , Linhagem Celular , Proteínas Culina/química , DNA/química , DNA/efeitos da radiação , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/química , Histonas/genética , Humanos , Poliubiquitina/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Dímeros de Pirimidina/química , Ubiquitinação
8.
Methods Mol Biol ; 682: 149-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21057927

RESUMO

This chapter describes a technique in which indirect immunofluorescence is applied to visualize the process of nucleotide excision repair (NER) at the site of locally induced damage in DNA. UV-irradiation of cells through an isopore polycarbonate membrane filter generates cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts (6-4PP) on a subnuclear area, which corresponds to the size of a pore on the membrane. Specific antibodies to CPD and 6-4PP define the damaged spot. The NER components co-localize at the damaged-DNA subnuclear spot, where the proteins are stained with the appropriate fluorescent antibodies. This relatively simple and affordable method facilitates the examination of the sequential assembly of NER proteins in the chromatin-embedded DNA photoproducts. The method also enhances the identification of repair auxiliary proteins and complexes, such as ubiquitin E3 ligases, involved in the initiation of NER on non-transcribed DNA.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/efeitos da radiação , Raios Ultravioleta , Soluções Tampão , Células Cultivadas , Detergentes , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Transporte Proteico/efeitos da radiação
9.
J Biol Chem ; 285(48): 37333-41, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20870715

RESUMO

The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, interacts with several host cellular proteins including uracil DNA glycosylase-2 (UNG2) and a cullin-RING E3 ubiquitin ligase assembly (CRL4(DCAF1)). The ligase is composed of cullin 4A (CUL4A), RING H2 finger protein (RBX1), DNA damage-binding protein 1 (DDB1), and a substrate recognition subunit, DDB1- and CUL4-associated factor 1 (DCAF1). Here we show that recombinant UNG2 specifically interacts with Vpr, but not with Vpx of simian immunodeficiency virus, forming a heterotrimeric complex with DCAF1 and Vpr in vitro as well as in vivo. Using reconstituted CRL4(DCAF1) and CRL4(DCAF1-Vpr) E3 ubiquitin ligases in vitro reveals that UNG2 ubiquitination (ubiquitylation) is facilitated by Vpr. Co-expression of DCAF1 and Vpr causes down-regulation of UNG2 in a proteasome-dependent manner, with Vpr mutants that are defective in UNG2 or DCAF1 binding abrogating this effect. Taken together, our results show that the CRL4(DCAF1) E3 ubiquitin ligase can be subverted by Vpr to target UNG2 for degradation.


Assuntos
Proteínas de Transporte/metabolismo , DNA Glicosilases/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Proteínas de Transporte/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , DNA Glicosilases/genética , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
10.
Cancer Res ; 68(13): 5014-22, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18593899

RESUMO

By removing UV-induced lesions from DNA, the nucleotide excision repair (NER) pathway preserves the integrity of the genome. The UV-damaged DNA-binding (UV-DDB) protein complex is involved in the recognition of chromatin-embedded UV-damaged DNA, which is the least understood step of NER. UV-DDB consists of DDB1 and DDB2, and it is a component of the cullin 4A (CUL4A)-based ubiquitin ligase, DDB1-CUL4A(DDB2). We previously showed that DDB1-CUL4A(DDB2) ubiquitinates histone H2A at the sites of UV lesions in a DDB2-dependent manner. Mutations in DDB2 cause a cancer prone syndrome, xeroderma pigmentosum group E (XP-E). CUL4A and its paralog, cullin 4B (CUL4B), copurify with the UV-DDB complex, but it is unclear whether CUL4B has a role in NER as a separate E3 ubiquitin ligase. Here, we present evidence that CUL4A and CUL4B form two individual E3 ligases, DDB1-CUL4A(DDB2) and DDB1-CUL4B(DDB2). To investigate CUL4B's possible role in NER, we examined its subcellular localization in unirradiated and irradiated cells. CUL4B colocalizes with DDB2 at UV-damaged DNA sites. Furthermore, CUL4B binds to UV-damaged chromatin as a part of the DDB1-CUL4B(DDB2) E3 ligase in the presence of functional DDB2. In contrast to CUL4A, CUL4B is localized in the nucleus and facilitates the transfer of DDB1 into the nucleus independently of DDB2. Importantly, DDB1-CUL4B(DDB2) is more efficient than DDB1-CUL4A(DDB2) in monoubiquitinating histone H2A in vitro. Overall, this study suggests that DDB1-CUL4B(DDB2) E3 ligase may have a distinctive function in modifying the chromatin structure at the site of UV lesions to promote efficient NER.


Assuntos
Cromatina/metabolismo , Proteínas Culina/metabolismo , Dano ao DNA , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/efeitos da radiação , Proteínas Culina/genética , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico/efeitos da radiação , Distribuição Tecidual , Transfecção , Ubiquitinação/efeitos da radiação , Raios Ultravioleta/efeitos adversos
11.
Proc Natl Acad Sci U S A ; 103(8): 2588-93, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16473935

RESUMO

Xeroderma pigmentosum (XP) is a heritable human disorder characterized by defects in nucleotide excision repair (NER) and the development of skin cancer. Cells from XP group E (XP-E) patients have a defect in the UV-damaged DNA-binding protein complex (UV-DDB), involved in the damage recognition step of NER. UV-DDB comprises two subunits, products of the DDB1 and DDB2 genes, respectively. Mutations in the DDB2 gene account for the underlying defect in XP-E. The UV-DDB complex is a component of the newly identified cullin 4A-based ubiquitin E3 ligase, DDB1-CUL4A(DDB2). The E3 ubiquitin ligases recognize specific substrates and mediate their ubiquitination to regulate protein activity or target proteins for degradation by the proteasomal pathway. In this study, we have addressed the role of the UV-DDB-based E3 in NER and sought a physiological substrate. We demonstrate that monoubiquitinated histone H2A in native chromatin coimmunoprecipitates with the endogenous DDB1-CUL4A(DDB2) complex in response to UV irradiation. Further, mutations in DDB2 alter the formation and binding activity of the DDB1-CUL4A(DDB2) ligase, accompanied by impaired monoubiquitination of H2A after UV treatment of XP-E cells, compared with repair-proficient cells. This finding indicates that DDB2, as the substrate receptor of the DDB1-CUL4A-based ligase, specifically targets histone H2A for monoubiquitination in a photolesion-binding-dependent manner. Given that the loss of monoubiquitinated histone H2A at the sites of UV-damaged DNA is associated with decreased global genome repair in XP-E cells, this study suggests that histone modification, mediated by the XPE factor, facilitates the initiation of NER.


Assuntos
Proteínas Culina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xeroderma Pigmentoso/enzimologia , Cromatina/metabolismo , Proteínas Culina/análise , DNA/química , DNA/efeitos da radiação , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Histonas/análise , Humanos , Mutação , Células Tumorais Cultivadas , Ubiquitina , Ubiquitina-Proteína Ligases/análise , Raios Ultravioleta , Xeroderma Pigmentoso/genética
12.
Hum Mol Genet ; 12(13): 1507-22, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12812979

RESUMO

Xeroderma pigmentosum (XP) is a skin cancer-prone autosomal recessive disease characterized by inability to repair UV-induced DNA damage. The major form of XP is defective in nucleotide excision repair (NER) and comprises seven complementation groups (A-G). The genes defective in all groups have been identified unambiguously with the exception of group E. The cells of some XP-E patients are deficient in a protein complex (consisting of two subunits: p127/DDBI and p48/DDB2) which binds to UV-damaged DNA (UV-DDB) and is specifically involved in the removal of photoproducts from the non-transcribed regions of the genome. However, other XP-E patients have been reported not to lack UV-damaged DNA binding activity (DDB(+)). Here we describe several genetically unrelated XP-E patients, not previously analyzed in depth, each carrying two mutated alleles for DDB2, causing either a single amino acid change or a protein truncation or internal deletion. These defects result in a severe decrease of detectable p48 protein, abolish interaction with the p127 subunit, and produce a deficiency in UV-DDB binding activity (DDB(-)). The role of p48 in the repair defect of these patients was demonstrated in vivo and in vitro. Investigation of four DDB(+) cell strains from patients previously assigned to XP-E, allowed us to reclassify all of them into other groups and to show that they do not share the molecular and biochemical features typical for XP-E. Besides confirming that the true XP-E phenotype is DDB(-), resulting from defects in a single gene, DDB2, our results identify the functional domains of the corresponding p48 protein.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Adulto , Alelos , Núcleo Celular/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Reparo do DNA , Relação Dose-Resposta à Radiação , Éxons , Feminino , Deleção de Genes , Genoma , Genótipo , Humanos , Immunoblotting , Masculino , Modelos Genéticos , Fenótipo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Raios Ultravioleta
13.
Nucleic Acids Res ; 30(11): 2588-98, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12034848

RESUMO

The UV-damaged DNA binding protein complex (UV-DDB) is implicated in global genomic nucleotide excision repair (NER) in mammalian cells. The complex consists of a heterodimer of p127 and p48. UV-DDB is defective in one complementation group (XP-E) of the heritable, skin cancer-prone disorder xeroderma pigmentosum. Upon UV irradiation of primate cells, UV-DDB associates tightly with chromatin, concomitant with the loss of extractable binding activity. We report here that an early event after UV, but not ionizing, radiation is the transient dose-dependent degradation of the small subunit, p48. Treatment of human cells with the proteasomal inhibitor NIP-L3VS blocks this UV-induced degradation of p48. In XP-E cell lines with impaired UV-DDB binding, p48 is resistant to degradation. UV-mediated degradation of p48 occurs independently of the expression of p53 and the cell's proficiency for NER, but recovery of p48 levels at later times (12 h and thereafter) is dependent upon the capacity of the cell to repair non-transcribed DNA. In addition, we find that the p127 subunit of UV-DDB binds in vivo to p300, a histone acetyltransferase. The data support a functional connection between UV-DDB binding activity, proteasomal degradation of p48 and chromatin remodeling during early steps of NER.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos da radiação , Raios Ultravioleta , Acetiltransferases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Chlorocebus aethiops , Cromatina/genética , Cromatina/metabolismo , Cromatina/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta à Radiação , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases , Humanos , Peso Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Mutação/genética , Testes de Precipitina , Complexo de Endopeptidases do Proteassoma , Ligação Proteica/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiação Ionizante , Fatores de Transcrição , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...