Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Clin Pediatr Dent ; 34(4): 287-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20831127

RESUMO

The purpose of this pilot study was to investigate the prevalence of trauma to incisor teeth in children with normal overjet and lip competence, treated with methylphenidate (Ritalin) for attention deficit hyperactivity disorder (ADHD). The study group consisted of 24 children (19 boys, 5 girls) aged 5-12 years (mean 8.45 +/- 2.25), diagnosed with ADHD and treated with methylphenidate at a minimal dosage of 10 mg per day. The control group consisted of 22 healthy children (13 boys, 9 girls) aged 5-12 years (mean 9.15 +/- 2.28). The dental examination included incisor relation measurements in the anterior segment (overjet), which was recorded using an orthodontic ruler. Lip competence was clinically determined, and anterior teeth were examined for dental trauma. The prevalence of dental trauma was significantly higher in the study group than in the control group (29.1% vs. 4.5% P = 0.02, t-test one tail). In conclusion, children with ADHD treated with methylphenidate have a high-risk for dental trauma. We believe that preventing dental trauma in this high risk group is possible. Consequently, the pediatrician and all medical staff attending to these children should encourage parents to consult frequently with a pediatric dentist to diagnose dental trauma and provide early treatment when needed.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Incisivo/lesões , Metilfenidato/uso terapêutico , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cefalometria , Criança , Pré-Escolar , Esmalte Dentário/lesões , Oclusão Dentária , Dentina/lesões , Feminino , Humanos , Lábio/anatomia & histologia , Masculino , Metilfenidato/administração & dosagem , Projetos Piloto
3.
Nature ; 414(6864): 652-6, 2001 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-11740563

RESUMO

In eukaryotic cells, incorrectly folded proteins in the endoplasmic reticulum (ER) are exported into the cytosol and degraded by the proteasome. This pathway is co-opted by some viruses. For example, the US11 protein of the human cytomegalovirus targets the major histocompatibility complex class I heavy chain for cytosolic degradation. How proteins are extracted from the ER membrane is unknown. In bacteria and mitochondria, members of the AAA ATPase family are involved in extracting and degrading membrane proteins. Here we demonstrate that another member of this family, Cdc48 in yeast and p97 in mammals, is required for the export of ER proteins into the cytosol. Whereas Cdc48/p97 was previously known to function in a complex with the cofactor p47 (ref. 5) in membrane fusion, we demonstrate that its role in ER protein export requires the interacting partners Ufd1 and Npl4. The AAA ATPase interacts with substrates at the ER membrane and is needed to release them as polyubiquitinated species into the cytosol. We propose that the Cdc48/p97-Ufd1-Npl4 complex extracts proteins from the ER membrane for cytosolic degradation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Proteínas Adaptadoras de Transporte Vesicular , Adenosina Trifosfatases/genética , Animais , Carboxipeptidases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catepsina A , Proteínas de Ciclo Celular/genética , Antígenos H-2/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Dobramento de Proteína , Transporte Proteico , Proteínas/metabolismo , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Células Tumorais Cultivadas , Proteína com Valosina
4.
Trends Biochem Sci ; 26(9): 545-50, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11551791

RESUMO

Conventional kinesin has long been known to be a molecular motor that transports vesicular cargo, but only recently have we begun to understand how it functions in cells. Regulation of kinesin involves self-inhibition in which a head-to-tail interaction prevents microtubule binding. Although the mechanism of motor activation remains to be clarified, recent progress with respect to cargo binding might provide a clue. Kinesin binds directly to the JIPs (JNK-interacting proteins), identified previously as scaffolding proteins in the JNK (c-Jun NH(2)-terminal kinase) signaling pathway. The JIPs can allow kinesin to transport many different cargoes and to concentrate and respond to signaling pathways at certain sites within the cell. The use of scaffolding proteins could be a general mechanism by which molecular motors link to their cargoes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Animais , Humanos , Cinesinas/química , Dobramento de Proteína , Transdução de Sinais
5.
Mol Biol Cell ; 12(8): 2546-55, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11514634

RESUMO

The human cytomegalovirus protein US11 induces the dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol for degradation by the proteasome. With the use of a fractionated, permeabilized cell system, we find that US11 activity is needed only in the cell membranes and that additional cytosolic factors are required for heavy chain dislocation. We identify ubiquitin as one of the required cytosolic factors. Cytosol depleted of ubiquitin does not support heavy chain dislocation from the ER, and activity can be restored by adding back purified ubiquitin. Methylated-ubiquitin or a ubiquitin mutant lacking all lysine residues does not substitute for wild-type ubiquitin, suggesting that polyubiquitination is required for US11-dependent dislocation. We propose a new function for ubiquitin in which polyubiquitination prevents the lumenal domain of the MHC class I heavy chain from moving back into the ER lumen. A similar mechanism may be operating in the dislocation of misfolded proteins from the ER in the cellular quality control pathway.


Assuntos
Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Animais , Astrocitoma , Bovinos , Fracionamento Celular , Membrana Celular/química , Membrana Celular/metabolismo , Citomegalovirus/química , Citomegalovirus/metabolismo , Humanos , Immunoblotting , Fígado/química , Modelos Biológicos , Células Tumorais Cultivadas
6.
EMBO J ; 20(10): 2462-71, 2001 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11350935

RESUMO

The major route for protein export or membrane integration in bacteria occurs via the Sec-dependent transport apparatus. The core complex in the inner membrane, consisting of SecYEG, forms a protein-conducting channel, while the ATPase SecA drives translocation of substrate across the membrane. The SecYEG complex from Escherichia coli was overexpressed, purified and crystallized in two dimensions. A 9 A projection structure was calculated using electron cryo-microscopy. The structure exhibits P12(1) symmetry, having two asymmetric units inverted with respect to one another in the unit cell. The map shows elements of secondary structure that appear to be transmembrane helices. The crystallized form of SecYEG is too small to comprise the translocation channel and does not contain a large pore seen in other studies. In detergent solution, the SecYEG complex displays an equilibrium between monomeric and tetrameric forms. Our results therefore indicate that, unlike other known channels, the SecYEG complex can exist as both an assembled channel and an unassembled smaller unit, suggesting that transitions between the two states occur during a functional cycle.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli , Oligopeptídeos/química , Peptidil Transferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cristalização , Escherichia coli/enzimologia , Oligopeptídeos/genética , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/metabolismo , Testes de Precipitina , Canais de Translocação SEC , Soluções
7.
Cell ; 104(6): 937-48, 2001 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-11290330

RESUMO

Cholera toxin is assembled from two subunits in the periplasm of Vibrio cholerae and disassembled in the analogous compartment of target cells, the lumen of the endoplasmic reticulum (ER), before a fragment of it, the A1 chain, is transported into the cytosol. We show that protein disulfide isomerase (PDI) in the ER lumen functions to disassemble and unfold the toxin once its A chain has been cleaved. PDI acts as a redox-driven chaperone; in the reduced state, it binds to the A chain and in the oxidized state it releases it. Our results explain the pathway of cholera toxin, suggest a role for PDI in retrograde protein transport into the cytosol, and indicate that PDI can act as a novel type of chaperone, whose binding and release of substrates is regulated by a redox, rather than an ATPase, cycle.


Assuntos
Toxina da Cólera/metabolismo , Chaperonas Moleculares/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Toxina da Cólera/química , Clonagem Molecular , Cães , Retículo Endoplasmático/metabolismo , Cinética , Microssomos/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Pâncreas/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Vibrio cholerae/metabolismo
8.
J Cell Biol ; 152(5): 959-70, 2001 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11238452

RESUMO

The cargo that the molecular motor kinesin moves along microtubules has been elusive. We searched for binding partners of the COOH terminus of kinesin light chain, which contains tetratricopeptide repeat (TPR) motifs. Three proteins were found, the c-jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) JIP-1, JIP-2, and JIP-3, which are scaffolding proteins for the JNK signaling pathway. Concentration of JIPs in nerve terminals requires kinesin, as evident from the analysis of JIP COOH-terminal mutants and dominant negative kinesin constructs. Coprecipitation experiments suggest that kinesin carries the JIP scaffolds preloaded with cytoplasmic (dual leucine zipper-bearing kinase) and transmembrane signaling molecules (the Reelin receptor, ApoER2). These results demonstrate a direct interaction between conventional kinesin and a cargo, indicate that motor proteins are linked to their membranous cargo via scaffolding proteins, and support a role for motor proteins in spatial regulation of signal transduction pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Cinesinas/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Cinesinas/química , Cinesinas/genética , Proteínas Relacionadas a Receptor de LDL , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Testes de Precipitina , Ligação Proteica , Ratos , Receptores de Lipoproteínas/metabolismo , Proteína Reelina , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
9.
J Mol Biol ; 305(3): 643-56, 2001 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-11152619

RESUMO

We have developed a non-steady-state mathematical model describing post-translational protein translocation across the endoplasmic reticulum membrane. Movement of the polypeptide chain through the channel in the endoplasmic reticulum membrane is considered to be a stochastic process which is biased at the lumenal side of the channel by the binding of BiP (Kar2p), a member of the Hsp70 family of ATPases (ratcheting model). Assuming that movement of the chain through the channel is caused by passive diffusion (Brownian ratchet), the model describes all available experimental data. The optimum set of model parameters indicates that the ratcheting mechanism functions at near-maximum rate, being relatively insensitive to variations of the association or dissociation rate constants of BiP or its concentration. The estimated rate constant for diffusion of a polypeptide inside the channel indicates that the chain makes contact with the walls of the channel. Since fitting of the model to the data required that the backward rate constant be larger than the forward constant during early diffusion steps, translocation must occur against a force. The latter may arise, for example, from the unfolding of the polypeptide chain in the cytosol. Our results indicate that the ratchet can transport polypeptides against a free energy of about 25 kJ/mol without significant retardation of translocation. The modeling also suggests that the BiP ratchet is optimized, allowing fast translocation to be coupled with minimum consumption of ATP and rapid dissociation of BiP in the lumen of the ER. Finally, we have estimated the maximum hydrophobicity of a polypeptide segment up to which lateral partitioning from the channel into the lipid phase does not result in significant retardation of translocation.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico , Modelos Biológicos , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Anticorpos/metabolismo , Proteínas de Transporte/metabolismo , Difusão , Chaperona BiP do Retículo Endoplasmático , Proteínas Fúngicas/metabolismo , Matemática , Chaperonas Moleculares/metabolismo , Transporte Proteico , Proteínas/química , Soluções , Processos Estocásticos , Termodinâmica
10.
Mol Cell ; 6(5): 1219-32, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11106759

RESUMO

Cotranslational translocation of proteins requires ribosome binding to the Sec61p channel at the endoplasmic reticulum (ER) membrane. We have used electron cryomicroscopy to determine the structures of ribosome-channel complexes in the absence or presence of translocating polypeptide chains. Surprisingly, the structures are similar and contain 3-4 connections between the ribosome and channel that leave a lateral opening into the cytosol. Therefore, the ribosome-channel junction may allow the direct transfer of polypeptides into the channel and provide a path for the egress of some nascent chains into the cytosol. Moreover, complexes solubilized from mammalian ER membranes contain an additional membrane protein that has a large, lumenal protrusion and is intercalated into the wall of the Sec61p channel. Thus, the native channel contains a component that is not essential for translocation.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Elongação Traducional da Cadeia Peptídica , Ribossomos/química , Ribossomos/metabolismo , Animais , Microscopia Crioeletrônica , Citoplasma/metabolismo , Cães , Retículo Endoplasmático/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Substâncias Macromoleculares , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Canais de Translocação SEC , Leveduras/química , Leveduras/citologia , Leveduras/metabolismo
11.
J Cell Biol ; 151(1): 167-78, 2000 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-11018062

RESUMO

In posttranslational translocation in yeast, completed protein substrates are transported across the endoplasmic reticulum membrane through a translocation channel formed by the Sec complex. We have used photo-cross-linking to investigate interactions of cytosolic proteins with a substrate synthesized in a reticulocyte lysate system, before its posttranslational translocation through the channel in the yeast membrane. Upon termination of translation, the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC) are released from the polypeptide chain, and the full-length substrate interacts with several different cytosolic proteins. At least two distinct complexes exist that contain among other proteins either 70-kD heat shock protein (Hsp70) or tailless complex polypeptide 1 (TCP1) ring complex/chaperonin containing TCP1 (TRiC/CCT), which keep the substrate competent for translocation. None of the cytosolic factors appear to interact specifically with the signal sequence. Dissociation of the cytosolic proteins from the substrate is accelerated to the same extent by the Sec complex and an unspecific GroEL trap, indicating that release occurs spontaneously without the Sec complex playing an active role. Once bound to the Sec complex, the substrate is stripped of all cytosolic proteins, allowing it to subsequently be transported through the membrane channel without the interference of cytosolic binding partners.


Assuntos
Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas de Saccharomyces cerevisiae , Chaperonina com TCP-1 , Chaperoninas/metabolismo , Reagentes de Ligações Cruzadas , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Chaperonas Moleculares , Precursores de Proteínas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transativadores/metabolismo
12.
J Cell Biol ; 150(3): 461-74, 2000 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-10931860

RESUMO

We find that the peripheral ER in Saccharomyces cerevisiae forms a dynamic network of interconnecting membrane tubules throughout the cell cycle, similar to the ER in higher eukaryotes. Maintenance of this network does not require microtubule or actin filaments, but its dynamic behavior is largely dependent on the actin cytoskeleton. We isolated three conditional mutants that disrupt peripheral ER structure. One has a mutation in a component of the COPI coat complex, which is required for vesicle budding. This mutant has a partial defect in ER segregation into daughter cells and disorganized ER in mother cells. A similar phenotype was found in other mutants with defects in vesicular trafficking between ER and Golgi complex, but not in mutants blocked at later steps in the secretory pathway. The other two mutants found in the screen have defects in the signal recognition particle (SRP) receptor. This receptor, along with SRP, targets ribosome-nascent chain complexes to the ER membrane for protein translocation. A conditional mutation in SRP also disrupts ER structure, but other mutants with translocation defects do not. We also demonstrate that, both in wild-type and mutant cells, the ER and mitochondria partially coalign, and that mutations that disrupt ER structure also affect mitochondrial structure. Our data suggest that both trafficking between the ER and Golgi complex and ribosome targeting are important for maintaining ER structure, and that proper ER structure may be required to maintain mitochondrial structure.


Assuntos
Complexo I de Proteína do Envoltório/genética , Retículo Endoplasmático/ultraestrutura , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular , Actinas , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Citoesqueleto , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Proteínas Ativadoras de GTPase , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Microtúbulos , Mitocôndrias/ultraestrutura , Proteínas SNARE , Saccharomyces cerevisiae/ultraestrutura , Partícula de Reconhecimento de Sinal/metabolismo
13.
J Mol Biol ; 301(2): 301-21, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10926511

RESUMO

Protein synthesis in eukaryotes is mediated by both cytoplasmic and membrane-bound ribosomes. During the co-translational translocation of secretory and membrane proteins, eukaryotic ribosomes dock with the protein conducting channel of the endoplasmic reticulum. An understanding of these processes will require the detailed structure of a eukaryotic ribosome. To this end, we have compared the three-dimensional structures of yeast and rabbit ribosomes at 24 A resolution. In general, we find that the active sites for protein synthesis and translocation have been highly conserved. It is interesting that a channel was visualized in the neck of the small subunit whose entrance is formed by a deep groove. By analogy with the prokaryotic small subunit, this channel may provide a conserved portal through which mRNA is threaded into the decoding center. In addition, both the small and large subunits are built around a dense tubular network. Our analysis further suggests that the nascent chain exit tunnel and the docking surface for the endoplasmic reticulum channel are formed by this network. We surmise that many of these features correspond to rRNA, based on biochemical and structural data. Ribosomal function is critically dependent on the specific association of small and large subunits. Our analysis of eukaryotic ribosomes reveals four conserved inter-subunit bridges with a geometry similar to that found in prokaryotes. In particular, a double-bridge connects the small subunit platform with the interface canyon on the large subunit. Moreover, a novel bridge is formed between the platform and the base of the L1 domain. Finally, size differences between mammalian and yeast large subunit rRNAs have been correlated with five expansion segments that form two large spines and three extended fingers. Overall, we find that expansion segments within the large subunit rRNA have been incorporated at positions distinct from the active sites for protein synthesis and translocation.


Assuntos
Proteínas de Membrana/metabolismo , RNA Ribossômico/ultraestrutura , Ribossomos/ultraestrutura , Animais , Domínio Catalítico , Microscopia Crioeletrônica , Técnicas In Vitro , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras , Modelos Moleculares , Biossíntese de Proteínas , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Coelhos , Reticulócitos/ultraestrutura , Ribossomos/química , Ribossomos/metabolismo , Canais de Translocação SEC , Saccharomyces/ultraestrutura , Proteínas de Saccharomyces cerevisiae
14.
Cell ; 102(2): 233-44, 2000 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-10943843

RESUMO

We have investigated how the transmembrane (TM) domain of a membrane protein is cotranslationally integrated into the endoplasmic reticulum. We demonstrate that the Sec61p channel allows the TM domain to bypass the barrier posed by the polar head groups of the lipid bilayer and come into contact with the hydrophobic interior of the membrane. Together with the TRAM protein, Sec61p provides a site in the membrane, at the interface of channel and lipid, through which a TM domain can dynamically equilibrate between the lipid and aqueous phases, depending on the hydrophobicity of the TM domain and the length of the polypeptide segment tethering it to the ribosome. Our results suggest a unifying, lipid-partitioning model which can explain the general behavior of hydrophobic topogenic sequences.


Assuntos
Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Reagentes de Ligações Cruzadas , Cães , Endopeptidase K/metabolismo , Glicosilação , Proteínas de Membrana/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Canais de Translocação SEC
15.
EMBO J ; 19(8): 1900-6, 2000 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-10775273

RESUMO

During early stages of cotranslational protein translocation across the endoplasmic reticulum (ER) membrane the ribosome is targeted to the heterotrimeric Sec61p complex, the major component of the protein-conducting channel. We demonstrate that this interaction is mediated by the 28S rRNA of the eukaryotic large ribosomal subunit. Bacterial ribosomes also bind via their 23S rRNA to the bacterial homolog of the Sec61p complex, the SecYEG complex. Eukaryotic ribosomes bind to the SecYEG complex, and prokaryotic ribosomes to the Sec61p complex. These data indicate that rRNA-mediated interaction of ribosomes with the translocation channel occurred early in evolution and has been conserved.


Assuntos
Proteínas de Membrana/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Animais , Detergentes/metabolismo , Cães , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Evolução Molecular , Immunoblotting , Proteínas de Membrana Transportadoras , Microssomos/metabolismo , Pâncreas/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 28S/metabolismo , Canais de Translocação SEC , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
16.
J Cell Biol ; 148(5): 883-98, 2000 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-10704440

RESUMO

We have established an in vitro system for the formation of the endoplasmic reticulum (ER). Starting from small membrane vesicles prepared from Xenopus laevis eggs, an elaborate network of membrane tubules is formed in the presence of cytosol. In the absence of cytosol, the vesicles only fuse to form large spheres. Network formation requires a ubiquitous cytosolic protein and nucleoside triphosphates, is sensitive to N-ethylmaleimide and high cytosolic Ca(2+) concentrations, and proceeds via an intermediate stage in which vesicles appear to be clustered. Microtubules are not required for membrane tubule and network formation. Formation of the ER network shares significant similarities with formation of the nuclear envelope. Our results suggest that the ER network forms in a process in which cytosolic factors modify and regulate a basic reaction of membrane vesicle fusion.


Assuntos
Retículo Endoplasmático/metabolismo , Fusão de Membrana/fisiologia , Microtúbulos/metabolismo , Oócitos/química , Actinas/metabolismo , Animais , Antineoplásicos/farmacologia , Cálcio/metabolismo , Cálcio/farmacologia , Fracionamento Celular/métodos , Linhagem Celular , Sistema Livre de Células/metabolismo , Colchicina/farmacologia , Citosol/química , Citosol/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/ultraestrutura , Etilmaleimida/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Ionóforos , Fusão de Membrana/efeitos dos fármacos , Microscopia Eletrônica , Microtúbulos/efeitos dos fármacos , Membrana Nuclear/metabolismo , Oócitos/citologia , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Reagentes de Sulfidrila/farmacologia , Xenopus
18.
Biol Chem ; 380(10): 1143-50, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10595576

RESUMO

Posttranslational protein translocation across the membrane of the endoplasmic reticulum is mediated by the Sec complex. This complex includes a transmembrane channel formed by multiple copies of the Sec61 protein. Translocation of a polypeptide begins when the signal sequence binds at a specific site within the channel. Binding results in the insertion of the substrate into the channel, possibly as a loop with a small segment exposed to the lumen. While bound, the signal sequence is in contact with both protein components of the channel and the lipid of the membrane. Subsequent movement of the polypeptide through the channel occurs when BiP molecules interact transiently with a luminal domain of the Sec complex, hydrolyze ATP, and bind to the substrate. Bound BiP promotes translocation by preventing the substrate from diffusing backwards through the channel, and thus acts as a molecular ratchet.


Assuntos
Retículo Endoplasmático/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Humanos , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Sinais Direcionadores de Proteínas/metabolismo
19.
J Cell Biol ; 147(1): 45-58, 1999 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-10508854

RESUMO

The human cytomegalovirus protein, US11, initiates the destruction of MHC class I heavy chains by targeting them for dislocation from the ER to the cytosol and subsequent degradation by the proteasome. We report the development of a permeabilized cell system that recapitulates US11-dependent degradation of class I heavy chains. We have used this system, in combination with experiments in intact cells, to identify and order intermediates in the US11-dependent degradation pathway. We find that heavy chains are ubiquitinated before they are degraded. Ubiquitination of the cytosolic tail of heavy chain is not required for its dislocation and degradation, suggesting that ubiquitination occurs after at least part of the heavy chain has been dislocated from the ER. Thus, ubiquitination of the heavy chain does not appear to be the signal to start dislocation. Ubiquitinated heavy chains are associated with membrane fractions, suggesting that ubiquitination occurs while the heavy chain is still bound to the ER membrane. Our results support a model in which US11 co-opts the quality control process by which the cell destroys misfolded ER proteins in order to specifically degrade MHC class I heavy chains.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/fisiologia , Ubiquitinas/metabolismo , Proteínas Virais/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Permeabilidade da Membrana Celular , Cisteína Endopeptidases/metabolismo , Citoplasma/metabolismo , Digitonina , Retículo Endoplasmático/metabolismo , Glicosilação , Meia-Vida , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Células Tumorais Cultivadas , Proteínas Virais/genética
20.
EMBO J ; 18(17): 4804-15, 1999 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10469658

RESUMO

Protein translocation across the membrane of the endoplasmic reticulum (ER) proceeds through a proteinaceous translocation machinery, the translocon. To identify components that may regulate translocation by interacting with nascent polypeptides in the translocon, we used site-specific photo-crosslinking. We found that a region C-terminal of the two N-glycosylation sites of the MHC class II-associated invariant chain (Ii) interacts specifically with the ribosome-associated membrane protein 4 (RAMP4). RAMP4 is a small, tail-anchored protein of 66 amino acid residues that is homologous to the yeast YSY6 protein. YSY6 suppresses a secretion defect of a secY mutant in Escherichia coli. The interaction of RAMP4 with Ii occurred when nascent Ii chains reached a length of 170 amino acid residues and persisted until Ii chain completion, suggesting translocational pausing. Site-directed mutagenesis revealed that the region of Ii interacting with RAMP4 contains essential hydrophobic amino acid residues. Exchange of these residues for serines led to a reduced interaction with RAMP4 and inefficient N-glycosylation. We propose that RAMP4 controls modification of Ii and possibly also of other secretory and membrane proteins containing specific RAMP4-interacting sequences. Efficient or variable glycosylation of Ii may contribute to its capacity to modulate antigen presentation by MHC class II molecules.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas de Membrana/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar/metabolismo , Glicosilação , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Ratos , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...