Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0291886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768157

RESUMO

Duoculture has been reported to increase growth rates of some fishes when reared in combination, due to "shading" effects between the species. Two experiments, one involving outdoor cage-rearing in a reservoir, and the other, indoor tank-rearing, were conducted within each of three temperatures ranges (means of ~18.0°C, ~22.0°C and ~26.5°C), to determine whether duoculture of bluegill (BG) Lepomis macrochirus and yellow perch (YP) Perca flavescens would lead to improved growth relative to when the two species were reared separately. Juvenile bluegill and yellow perch were reared in triplicated groups each involving monoculture sets of 100% BG and 100% YP, and a duoculture set of 50% BG + 50% YP. Experiments in cages (Exp. 1) ran for 150 days while those in tanks ran for 126 days (Exp. 2). In Experiment 1, bluegill exhibited significantly greater (P<0.05) mean weight (P<0.05) in duoculture than in monoculture, under the high summer-like range of temperature (~26.5°C) over most of the experiment, whereas yellow perch showed no significant difference in mean weight in duoculture versus monoculture. By the end of a 150-d experiment, bluegill in duoculture outweighed those in monoculture by 62.5%. In Experiment 2, yellow perch in duoculture grew significantly larger than in monoculture (P<0.05) under the warm thermal regime (mean of ~22°C), while no significant differences were detected in mean weight of bluegill in monoculture versus duoculture. Yellow perch in duoculture outweighed those in monoculture by 33.1% at the end of the experiment. Yellow perch performed better in duoculture than in monoculture under the low thermal regime (mean of ~18°C) in both experiments. A significantly greater reduction of CVwt was observed for both bluegill and yellow perch in duoculture than in monoculture in Experiment 1, while no differences in CVwt reduction were detected for bluegill in Experiment 2. Feed conversion ratios (FCR) of bluegill and yellow perch reared in duoculture were significantly lower than for both fishes reared in monoculture in Experiment 1, while there were no significant differences in FCR among the three groups throughout most of Experiment 2. Findings indicate that duoculture of yellow perch and bluegill holds good potential to improve growth and FCR, and to reduce size variation by diminishing social interaction costs.


Assuntos
Percas , Temperatura , Animais , Percas/crescimento & desenvolvimento , Percas/fisiologia , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Perciformes/crescimento & desenvolvimento , Perciformes/fisiologia , Comportamento Social
2.
PLoS One ; 17(5): e0267904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507560

RESUMO

A 180-day experiment was conducted to evaluate the effects of density on sex differentiation, sexual dimorphism, cortisol level, and stress related gene expression. Yellow perch, Perca flavescens, with initial mean body weight of 0.03 ± 0.001 g were reared in three different stocking densities: 1, 2, and 4 fish/L, termed as low (LD), moderate (MD), and high (HD) density, respectively, in a flow-through tank system. Results showed no significant differences in sex ratio in all density groups compared to normal population 1:1, and sexual size dimorphism (SSD) appeared when male and female were as small as the mean size reaching 11.5 cm and 12.3 cm in total length (TL) or 13.2g and 16.9g in body weight (BW), respectively. This female-biased sexual growth dimorphism was more pronounced in LD, although it was observed across all density groups. A significantly higher condition factor (K) of females than males in the LD group, and significantly higher R values of LD and MD than HD with the length/weight (L/W) linear relationships in females, were observed. Parallelly, fish reared in LD showed significantly higher mean body weight than those in the MD and HD groups, but there were no significant differences between the MD and HD. Similar results were also observed in all the other parameters of weight gain, specific growth rate (SGR), condition factor (K), and survival. These findings suggested that high density not only affected growth itself, but also affected SSD, growth trajectory or body shape, and general wellbeing in fish, especially in females. There were no significant differences in gonadosomatic index (GSI) and viscerosomatic index (VSI) among all the density groups; however, the hepatosomatic index (HSI) of LD was significantly higher than MD and HD, suggesting high density affected liver reserves or functions. Physiologically, plasma cortisol level was significantly highest in the LD among all groups, followed by MD, and lowest in HD. At the molecular level, the expression of the 70-kDa heat shock protein (Hsp70), glutathione peroxidase (GPx), and superoxide dismutase (SOD) genes involved in cellular stress were significantly upregulated in the HD group. The most significantly downregulated expression of these genes was consistently observed in the MD when compared to the LD and HD groups. In conclusion, increasing density induced chronic stress in yellow perch without affecting sex differentiation, but negatively affected expression of stress-related genes and mobilization of liver reserve, resulting in poorer wellbeing and reduced SSD, growth, and survival.


Assuntos
Percas , Animais , Peso Corporal , Feminino , Expressão Gênica , Hidrocortisona , Masculino , Percas/fisiologia , Caracteres Sexuais , Diferenciação Sexual/genética
3.
Fish Physiol Biochem ; 48(1): 161-171, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039993

RESUMO

A study was conducted to evaluate the gonad differentiation of juvenile yellow perch (YP, Perca flavencens) and determine the latest labile period related to hormone treatment. Juvenile fish were subjected to two dietary concentrations of methyltestosterone (MT; 20 and 50 mg/kg feed) for 60 days in three (3) age groups of 38-, 46-, and 67-days post-hatching (dph), where control group were fed with standard commercial feed. Following a 10-month on-growing period, sex phenotypes were determined by gross and histological gonad morphology. Results showed the juvenile YP responded to the exogenous hormone when it was applied at 38 dph for both 20 and 50 mg/kg feed resulting in 100% males. At 46 dph, only 50 mg/kg feed resulted in 100% males. Both MT-treated at 38 and 46 dph significantly differed (P < 0.01) from the expected normal population of male:female (1:1). MT-treated at 67 dph resulted in 37% and 25% intersex fish for both 20 and 50 mg/kg feed dosage groups, respectively. MT-treated at 38 and 46 dph promoted growth and showed significantly heavier mean body weight (P < 0.05) compared to control. The gonadosomatic index (GSI) of MT-treated at 38 and 46 dph was significantly lower than that in control. This study provides the first evidence that juvenile YP can be successfully masculinized when the treatment is initiated at the age of up to 46 dph. The result is important for sex control in aquaculture.


Assuntos
Metiltestosterona , Percas , Diferenciação Sexual , Animais , Feminino , Gônadas , Masculino , Metiltestosterona/farmacologia , Percas/crescimento & desenvolvimento
4.
PLoS One ; 12(2): e0171187, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158238

RESUMO

Transcriptome sequencing could facilitate discovery of sex-biased genes, biological pathways and molecular markers, which could help clarify the molecular mechanism of sex determination and sexual dimorphism, and assist with selective breeding in aquaculture. Yellow perch has unique gonad system and sexual dimorphism and is an alternative model to study mechanism of sex determination, sexual dimorphism and sexual selection. In this study, we performed the de novo assembly of yellow perch gonads and muscle transcriptomes by high throughput Illumina sequencing. A total of 212,180 contigs were obtained, ranging from 127 to 64,876 bp, and N50 of 1,066 bp. The assembly RNA-Seq contigs (≥200bp) were then used for subsequent analyses, including annotation, pathway analysis, and microsatellites discovery. No female- and pseudo-male-biased genes were involved in any pathways while male-biased genes were involved in 29 pathways, and neuroactive ligand receptor interaction and enzyme of trypsin (enzyme code, EC: 3.4.21.4) was highly involved. Pyruvate kinase (enzyme code, EC: 2.7.1.40), which plays important roles in cell proliferation, was highly expressed in muscles. In addition, a total of 183,939 SNPs, 11,286 InDels and 41,479 microsatellites were identified. This study is the first report on transcriptome information in Percids, and provides rich resources for conducting further studies on understanding the molecular basis of sex determinations, sexual dimorphism, and sexual selection in fish, and for population studies and marker-assisted selection in Percids.


Assuntos
Percas/genética , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Percas/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Caracteres Sexuais , Processos de Determinação Sexual/genética
5.
Biol Bull ; 230(3): 197-208, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27365415

RESUMO

There is increasing evidence that temperature effects on sex ratio in fish species are ubiquitous. Temperature effects on sex ratio could be influenced by parent, strain, and population, whether in fish species with temperature-dependent sex determination or genetic sex determination plus temperature effects. In the present study, effects of genotype-temperature interactions on sex determination in bluegill sunfish were further investigated, based on our previous results, using four geographic strains: Hebron, Jones, Hocking, and Missouri. In the Hebron strain, the two higher-temperature treatment groups (24 °C and 32 °C) produced more males than the low-temperature treatment group (17 °C) from 6 days post-hatching (dph) to 90 dph. In contrast, the low-temperature treatment produced more males than the other two higher-temperature treatments in the Jones strain. No significant effects of temperature on sex ratio were detected in the other two strains. Our results from sex ratio variance in different treatment times suggest that the thermosensitive period of sex differentiation occurs prior to 40 dph. Our results further confirmed that genotype-temperature interactions influence sex determination in bluegill. Therefore, to significantly increase the proportion of males, which grow faster and larger than females, a consumer- and environment-friendly approach may be achieved through selection of temperature sensitivity in bluegill.


Assuntos
Peixes/fisiologia , Perciformes/fisiologia , Razão de Masculinidade , Temperatura , Animais , Feminino , Genótipo , Masculino , Processos de Determinação Sexual/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...