Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 179(2): 630-639, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30498023

RESUMO

Whereas photosynthetic function under steady-state light conditions has been well characterized, little is known about its changes that occur in response to light fluctuations. Chlororespiration, a simplified respiratory chain, is widespread across all photosynthetic lineages, but its role remains elusive. Here, we show that chlororespiration plays a crucial role in intermittent-light conditions in the green alga Chlamydomonas reinhardtii Chlororespiration, which is localized in thylakoid membranes together with the photosynthetic electron transfer chain, involves plastoquinone reduction and plastoquinol oxidation by a Plastid Terminal Oxidase (PTOX). We show that PTOX activity is critical for growth under intermittent light, with severe growth defects being observed in a mutant lacking PTOX2, the major plastoquinol oxidase. We demonstrate that the hampered growth results from a major change in the kinetics of redox relaxation of the photosynthetic electron transfer chain during the dark periods. This change, in turn, has a dramatic effect on the physiology of photosynthesis during the light periods, notably stimulating cyclic electron flow at the expense of the linear electron flow.


Assuntos
Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/metabolismo , Escuridão , Transporte de Elétrons , Luz , Mutação , Oxirredução , Oxirredutases/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Tilacoides/metabolismo , Regulação para Cima
2.
Chem Sci ; 9(43): 8271-8281, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30542576

RESUMO

Plants, algae, and some bacteria convert solar energy into chemical energy by using photosynthesis. In light of the current energy environment, many research strategies try to benefit from photosynthesis in order to generate usable photobioelectricity. Among all the strategies developed for transferring electrons from the photosynthetic chain to an outer collecting electrode, we recently implemented a method on a preparative scale (high surface electrode) based on a Chlamydomonas reinhardtii green algae suspension in the presence of exogenous quinones as redox mediators. While giving rise to an interesting performance (10-60 µA cm-2) in the course of one hour, this device appears to cause a slow decrease of the recorded photocurrent. In this paper, we wish to analyze and understand this gradual fall in performance in order to limit this issue in future applications. We thus first show that this kind of degradation could be related to over-irradiation conditions or side-effects of quinones depending on experimental conditions. We therefore built an empirical model involving a kinetic quenching induced by incubation with quinones, which is globally consistent with the experimental data provided by fluorescence measurements achieved after dark incubation of algae in the presence of quinones.

3.
Nat Microbiol ; 2(10): 1350-1357, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28785078

RESUMO

Cyanobacteria are important contributors to primary production in the open oceans. Over the past decade, various photosynthesis-related genes have been found in viruses that infect cyanobacteria (cyanophages). Although photosystem II (PSII) genes are common in both cultured cyanophages and environmental samples 1-4 , viral photosystem I (vPSI) genes have so far only been detected in environmental samples 5,6 . Here, we have used a targeted strategy to isolate a cyanophage from the tropical Pacific Ocean that carries a PSI gene cassette with seven distinct PSI genes (psaJF, C, A, B, K, E, D) as well as two PSII genes (psbA, D). This cyanophage, P-TIM68, belongs to the T4-like myoviruses, has a prolate capsid, a long contractile tail and infects Prochlorococcus sp. strain MIT9515. Phage photosynthesis genes from both photosystems are expressed during infection, and the resultant proteins are incorporated into membranes of the infected host. Moreover, photosynthetic capacity in the cell is maintained throughout the infection cycle with enhancement of cyclic electron flow around PSI. Analysis of metagenomic data from the Tara Oceans expedition 7 shows that phages carrying PSI gene cassettes are abundant in the tropical Pacific Ocean, composing up to 28% of T4-like cyanomyophages. They are also present in the tropical Indian and Atlantic Oceans. P-TIM68 populations, specifically, compose on average 22% of the PSI-gene-cassette carrying phages. Our results suggest that cyanophages carrying PSI and PSII genes are likely to maintain and even manipulate photosynthesis during infection of their Prochlorococcus hosts in the tropical oceans.


Assuntos
Transporte de Elétrons/genética , Myoviridae/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Prochlorococcus/genética , Prochlorococcus/virologia , Oceano Atlântico , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genes Virais/genética , Genoma Viral/genética , Myoviridae/classificação , Myoviridae/patogenicidade , Myoviridae/ultraestrutura , Oceano Pacífico , Fotossíntese/genética , Filogenia , Proteínas Virais/genética
4.
Nat Commun ; 8: 15274, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28466860

RESUMO

Strategies to harness photosynthesis from living organisms to generate electrical power have long been considered, yet efficiency remains low. Here, we aimed to reroute photosynthetic electron flow in photosynthetic organisms without compromising their phototrophic properties. We show that 2,6-dimethyl-p-benzoquinone (DMBQ) can be used as an electron mediator to assess the efficiency of mutations designed to engineer a novel electron donation pathway downstream of the primary electron acceptor QA of Photosystem (PS) II in the green alga Chlamydomonas reinhardtii. Through the use of structural prediction studies and a screen of site-directed PSII mutants we show that modifying the environment of the QA site increases the reduction rate of DMBQ. Truncating the C-terminus of the PsbT subunit protruding in the stroma provides evidence that shortening the distance between QA and DMBQ leads to sustained electron transfer to DMBQ, as confirmed by chronoamperometry, consistent with a bypass of the natural QA°- to QB pathway.


Assuntos
Chlamydomonas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Quinonas/metabolismo , Benzoquinonas/metabolismo , Sítios de Ligação , Clorofila/metabolismo , Diurona/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Fluorescência , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Fotossíntese
5.
Mol Plant ; 10(1): 115-130, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27742488

RESUMO

The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Clorofila/fisiologia , Alelos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Clorofila/biossíntese , Clorofila/genética , Proteínas de Ligação à Clorofila/genética , Luz , Oxigenases/metabolismo , Mutação Puntual , Proteínas das Membranas dos Tilacoides/metabolismo
6.
ACS Chem Biol ; 11(11): 3191-3201, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27709886

RESUMO

Nitric oxide (NO) sensors are heme proteins which may also bind CO and O2. Control of heme-gas affinity and their discrimination are achieved by the structural properties and reactivity of the heme and its distal and proximal environments, leading to several energy barriers. In the bacterial NO sensor cytochrome c' from Alcaligenes xylosoxidans (AXCP), the single Leu16Ala distal mutation boosts the affinity for gas ligands by a remarkable 106-108-fold, transforming AXCP from one of the lowest affinity gas binding proteins to one of the highest. Here, we report the dynamics of diatomics after photodissociation from wild type and L16A-AXCP over 12 orders of magnitude in time. For the L16A variant, the picosecond geminate rebinding of both CO and NO appears with an unprecedented 100% yield, and no exit of these ligands from protein to solvent could be observed. Molecular dynamic simulations saliently demonstrate that dissociated CO stays within 4 Å from Fe2+, in contrast to wild-type AXCP. The L16A mutation confers a heme propionate conformation and docking site which traps the diatomics, maximizing the probability of recombination and directly explaining the ultrahigh affinities for CO, NO, and O2. Overall, our results point to a novel mechanism for modulating heme-gas affinities in proteins.


Assuntos
Citocromos c/química , Heme/química , Óxido Nítrico/química , Propionatos/química , Recombinação Genética , Alcaligenes/enzimologia , Monóxido de Carbono/química , Cinética , Conformação Molecular , Simulação de Dinâmica Molecular
7.
Biochim Biophys Acta ; 1857(12): 1943-1948, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27705821

RESUMO

Two mutants, D1-H198Q and D1-H198A, have been previously constructed in Thermosynechococcus elongatus with the aim at modifying the redox potential of the P680•+/P680 couple by changing the axial ligand of PD1, one the two chlorophylls of the Photosystem II primary electron donor [Sugiura et al., Biochim. Biophys. Acta 1777 (2008) 331-342]. However, after the publication of this work it was pointed out to us by Dr. Eberhard Schlodder (Technische Universität Berlin) that in both mutants the pheophytin band shift which is observed upon the reduction of QA was centered at 544nm instead of 547nm, clearly showing that the D1 protein corresponded to PsbA1 whereas the mutants were supposedly constructed in the psbA3 gene so that the conclusions in our previous paper were wrong. O2 evolving mutants have been therefore reconstructed and their analyze shows that they are now correct mutants which are suitable for further studies. Indeed, the D1-H198Q mutation downshifted by ≈3nm the P680•+/P680 difference absorption spectrum in the Soret region and increased the redox potential of the P680•+/P680 couple and the D1-H198A mutation decreased the redox potential of the P680•+/P680 couple all these effects being comparable to those which were observed in Synechocystis sp. PCC 6803 [Diner et al., Biochemistry 40 (2001) 9265-9281 and Merry et al. Biochemistry 37 (1998) 17,439-17,447]. We apologize for having presented wrong data and wrong conclusions in our earlier publication.

8.
Nat Plants ; 2: 16031, 2016 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-27249564

RESUMO

Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy.


Assuntos
Chlamydomonas/metabolismo , Microalgas/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Aclimatação , Luz
9.
PLoS One ; 11(5): e0155186, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152644

RESUMO

Cytochrome bd-I is one of the three proton motive force-generating quinol oxidases in the O2-dependent respiratory chain of Escherichia coli. It contains one low-spin haem (b558) and the two high-spin haems (b595 and d) as the redox-active cofactors. In order to examine the flash-induced intraprotein reverse electron transfer (the so-called ''electron backflow''), CO was photolyzed from the ferrous haem d in one-electron reduced (b5583+b5953+d2+-CO) cytochrome bd-I, and the fully reduced (b5582+b5952+d2+-CO) oxidase as a control. In contrast to the fully reduced cytochrome bd-I, the transient spectrum of one-electron reduced oxidase at a delay time of 1.5 µs is clearly different from that at a delay time of 200 ns. The difference between the two spectra can be modeled as the electron transfer from haem d to haem b595 in 3-4% of the cytochrome bd-I population. Thus, the interhaem electron backflow reaction induced by photodissociation of CO from haem d in one-electron reduced cytochrome bd-I comprises two kinetically different phases: the previously unnoticed fast electron transfer from haem d to haem b595 within 0.2-1.5 µs and the slower well-defined electron equilibration with τ ~16 µs. The major new finding of this work is the lack of electron transfer at 200 ns.


Assuntos
Citocromos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Heme/metabolismo , Oxirredutases/metabolismo , Grupo dos Citocromos b , Transporte de Elétrons
10.
Plant Cell ; 28(3): 616-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26941092

RESUMO

The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.


Assuntos
Diatomáceas/fisiologia , Transdução de Sinal Luminoso/efeitos da radiação , Fitocromo/efeitos da radiação , Plantas/efeitos da radiação , Adaptação Fisiológica , Clorofila/metabolismo , Diatomáceas/efeitos da radiação , Oceanos e Mares , Análise Espectral Raman , Luz Solar
11.
Mol Plant ; 9(4): 558-68, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26768121

RESUMO

While photosynthetic linear electron flow produces both ATP and NADPH, cyclic electron flow (CEF) around photosystem I (PSI) and cytochrome b6f generates only ATP. CEF is thus essential to balance the supply of ATP and NADPH for carbon fixation; however, it remains unclear how the system tunes the relative levels of linear and cyclic flow. Here, we show that PETO, a transmembrane thylakoid phosphoprotein specific of green algae, contributes to the stimulation of CEF when cells are placed in anoxia. In oxic conditions, PETO co-fractionates with other thylakoid proteins involved in CEF (ANR1, PGRL1, FNR). In PETO-knockdown strains, interactions between these CEF proteins are affected. Anoxia triggers a reorganization of the membrane, so that a subpopulation of PSI and cytochrome b6f now co-fractionates with the CEF effectors in sucrose gradients. The absence of PETO impairs this reorganization. Affinity purification identifies ANR1 as a major interactant of PETO. ANR1 contains two ANR domains, which are also found in the N-terminal region of NdhS, the ferredoxin-binding subunit of the plant ferredoxin-plastoquinone oxidoreductase (NDH). We propose that the ANR domain was co-opted by two unrelated CEF systems (PGR and NDH), possibly as a sensor of the redox state of the membrane.


Assuntos
Chlamydomonas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Chlamydomonas/citologia , Transporte de Elétrons , Técnicas de Silenciamento de Genes , Oxigênio/metabolismo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Proteínas de Plantas/genética , Ligação Proteica
12.
Biochim Biophys Acta ; 1857(1): 23-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26435390

RESUMO

Photosynthetic water oxidation to molecular oxygen is carried out by photosystem II (PSII) over a reaction cycle involving four photochemical steps that drive the oxygen-evolving complex through five redox states Si (i = 0,…, 4). For understanding the catalytic strategy of biological water oxidation it is important to elucidate the energetic landscape of PSII and in particular that of the final S4 → S0 transition. In this short-lived chemical step the four oxidizing equivalents accumulated in the preceding photochemical events are used up to form molecular oxygen, two protons are released and at least one substrate water molecule binds to the Mn4CaO5 cluster. In this study we probed the probability to form S4 from S0 and O2 by incubating YD-less PSII in the S0 state for 2­3 days in the presence of (18)O2 and H2(16)O. The absence of any measurable (16,18)O2 formation by water-exchange in the S4 state suggests that the S4 state is hardly ever populated. On the basis of a detailed analysis we determined that the equilibrium constant K of the S4 → S0 transition is larger than 1.0 × 10(7) so that this step is highly exergonic. We argue that this finding is consistent with current knowledge of the energetics of the S0 to S4 reactions, and that the high exergonicity is required for the kinetic efficiency of PSII.


Assuntos
Oxigênio/metabolismo , Fotossíntese , Entropia , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo
13.
Photosynth Res ; 127(1): 13-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25512104

RESUMO

The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10% of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways.


Assuntos
Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Rhodobacter sphaeroides/citologia , Cromatóforos Bacterianos/metabolismo , Carotenoides/metabolismo , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Gramicidina/administração & dosagem , Gramicidina/farmacologia , Concentração de Íons de Hidrogênio , Ionóforos/administração & dosagem , Ionóforos/farmacologia , Fotossíntese , Rhodobacter sphaeroides/efeitos dos fármacos , Rhodobacter sphaeroides/metabolismo , Esferoplastos/efeitos dos fármacos
14.
Nature ; 524(7565): 366-9, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26168400

RESUMO

Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.


Assuntos
Organismos Aquáticos/metabolismo , Dióxido de Carbono/metabolismo , Diatomáceas/citologia , Diatomáceas/metabolismo , Mitocôndrias/metabolismo , Fotossíntese , Plastídeos/metabolismo , Força Próton-Motriz , Trifosfato de Adenosina/metabolismo , Organismos Aquáticos/citologia , Organismos Aquáticos/enzimologia , Organismos Aquáticos/genética , Ciclo do Carbono , Diatomáceas/enzimologia , Diatomáceas/genética , Ecossistema , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo , NADP/metabolismo , Oceanos e Mares , Oxirredução , Oxirredutases/deficiência , Oxirredutases/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo
15.
Biochim Biophys Acta ; 1847(10): 1267-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188375

RESUMO

Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency.

16.
Biophys Chem ; 205: 1-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26051794

RESUMO

Oxygenic photosynthesis is the complex process that occurs in plants or algae by which the energy from the sun is converted into an electrochemical potential that drives the assimilation of carbon dioxide and the synthesis of carbohydrates. Quinones belong to a family of species commonly found in key processes of the Living, like photosynthesis or respiration, in which they act as electron transporters. This makes this class of molecules a popular candidate for biofuel cell and bioenergy applications insofar as they can be used as cargo to ship electrons to an electrode immersed in the cellular suspension. Nevertheless, such electron carriers are mostly selected empirically. This is why we report on a method involving fluorescence measurements to estimate the ability of seven different quinones to accept photosynthetic electrons downstream of photosystem II, the first protein complex in the light-dependent reactions of oxygenic photosynthesis. To this aim we use a mutant of Chlamydomonas reinhardtii, a unicellular green alga, impaired in electron downstream of photosystem II and assess the ability of quinones to restore electron flow by fluorescence. In this work, we defined and extracted a "derivation parameter" D that indicates the derivation efficiency of the exogenous quinones investigated. D then allows electing 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone and p-phenylbenzoquinone as good candidates. More particularly, our investigations suggested that other key parameters like the partition of quinones between different cellular compartments and their propensity to saturate these various compartments should also be taken into account in the process of selecting exogenous quinones for the purpose of deriving photoelectrons from intact algae.


Assuntos
Elétrons , Fotossíntese/efeitos dos fármacos , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Quinonas/metabolismo , Quinonas/farmacologia , Espectrometria de Fluorescência , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo
17.
Proc Natl Acad Sci U S A ; 112(14): E1697-704, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831539

RESUMO

We investigated the changes of heme coordination in purified soluble guanylate cyclase (sGC) by time-resolved spectroscopy in a time range encompassing 11 orders of magnitude (from 1 ps to 0.2 s). After dissociation, NO either recombines geminately to the 4-coordinate (4c) heme (τG1 = 7.5 ps; 97 ± 1% of the population) or exits the heme pocket (3 ± 1%). The proximal His rebinds to the 4c heme with a 70-ps time constant. Then, NO is distributed in two approximately equal populations (1.5%). One geminately rebinds to the 5c heme (τG2 = 6.5 ns), whereas the other diffuses out to the solution, from where it rebinds bimolecularly (τ = 50 µs with [NO] = 200 µM) forming a 6c heme with a diffusion-limited rate constant of 2 × 10(8) M(-1)⋅s(-1). In both cases, the rebinding of NO induces the cleavage of the Fe-His bond that can be observed as an individual reaction step. Saliently, the time constant of bond cleavage differs depending on whether NO binds geminately or from solution (τ5C1 = 0.66 µs and τ5C2 = 10 ms, respectively). Because the same event occurs with rates separated by four orders of magnitude, this measurement implies that sGC is in different structural states in both cases, having different strain exerted on the Fe-His bond. We show here that this structural allosteric transition takes place in the range 1-50 µs. In this context, the detection of NO binding to the proximal side of sGC heme is discussed.


Assuntos
Guanilato Ciclase/química , Histidina/química , Receptores Citoplasmáticos e Nucleares/química , Sítio Alostérico , Animais , Bovinos , Heme/química , Hemoglobinas/química , Ferro/química , Conformação Molecular , Óxido Nítrico/química , Ligação Proteica , Transdução de Sinais , Guanilil Ciclase Solúvel , Espectrofotometria , Fatores de Tempo
18.
Biophys J ; 108(6): 1537-1547, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25809266

RESUMO

Two functional electron transfer (ET) chains, related by a pseudo-C2 symmetry, are present in the reaction center of photosystem I (PSI). Due to slight differences in the environment around the cofactors of the two branches, there are differences in both the kinetics of ET and the proportion of ET that occurs on the two branches. The strongest evidence that this is indeed the case relied on the observation that the oxidation rates of the reduced phylloquinone (PhQ) cofactor differ by an order of magnitude. Site-directed mutagenesis of residues involved in the respective PhQ-binding sites resulted in a specific alteration of the rates of semiquinone oxidation. Here, we show that the PsaA-F689N mutation results in an ∼100-fold decrease in the observed rate of PhQA(-) oxidation. This is the largest change of PhQA(-) oxidation kinetics observed so far for a single-point mutation, resulting in a lifetime that exceeds that of the terminal electron donor, P700(+). This situation allows a second photochemical charge separation event to be initiated before PhQA(-) has decayed, thereby mimicking in PSI a situation that occurs in type II reaction centers. The results indicate that the presence of PhQA(-) does not impact the overall quantum yield and leads to an almost complete redistribution of the fractional utilization of the two functional ET chains, in favor of the one that does not bear the charged species. The evolutionary implications of these results are also briefly discussed.


Assuntos
Transporte de Elétrons , Complexo de Proteína do Fotossistema I/química , Proteínas de Algas/química , Proteínas de Algas/genética , Chlamydomonas reinhardtii , Elétrons , Cinética , Modelos Moleculares , Mutação , Oxirredução , Complexo de Proteína do Fotossistema I/genética , Análise Espectral , Vitamina K 1/química
19.
J Biol Chem ; 290(13): 8666-76, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25691575

RESUMO

Photosynthetic microalgae are exposed to changing environmental conditions. In particular, microbes found in ponds or soils often face hypoxia or even anoxia, and this severely impacts their physiology. Chlamydomonas reinhardtii is one among such photosynthetic microorganisms recognized for its unusual wealth of fermentative pathways and the extensive remodeling of its metabolism upon the switch to anaerobic conditions. As regards the photosynthetic electron transfer, this remodeling encompasses a strong limitation of the electron flow downstream of photosystem I. Here, we further characterize the origin of this limitation. We show that it stems from the strong reducing pressure that builds up upon the onset of anoxia, and this pressure can be relieved either by the light-induced synthesis of ATP, which promotes the consumption of reducing equivalents, or by the progressive activation of the hydrogenase pathway, which provides an electron transfer pathway alternative to the CO2 fixation cycle.


Assuntos
Trifosfato de Adenosina/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Hidrogênio/metabolismo , NADP/metabolismo , Oxigênio/metabolismo , Anaerobiose , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo
20.
Annu Rev Plant Biol ; 66: 49-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25580838

RESUMO

Plastids have retained from their cyanobacterial ancestor a fragment of the respiratory electron chain comprising an NADPH dehydrogenase and a diiron oxidase, which sustain the so-called chlororespiration pathway. Despite its very low turnover rates compared with photosynthetic electron flow, knocking out the plastid terminal oxidase (PTOX) in plants or microalgae leads to severe phenotypes that encompass developmental and growth defects together with increased photosensitivity. On the basis of a phylogenetic and structural analysis of the enzyme, we discuss its physiological contribution to chloroplast metabolism, with an emphasis on its critical function in setting the redox poise of the chloroplast stroma in darkness. The emerging picture of PTOX is that of an enzyme at the crossroads of a variety of metabolic processes, such as, among others, the regulation of cyclic electron transfer and carotenoid biosynthesis, which have in common their dependence on the redox state of the plastoquinone pool, set largely by the activity of PTOX in darkness.


Assuntos
Cloroplastos/fisiologia , Transporte de Elétrons , Oxirredutases/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Cloroplastos/enzimologia , Cloroplastos/metabolismo , Oxirredução , Oxirredutases/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...