Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Nat Commun ; 9(1): 912, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500438

RESUMO

Isomerization and carbon chemistry in the gas phase are key processes in many scientific studies. Here we report on the isomerization process from linear [Formula: see text] to its monocyclic isomer. [Formula: see text] ions were trapped in an electrostatic ion beam trap and then excited with a laser pulse of precise energy. The neutral products formed upon photoexcitation were measured as a function of time after the laser pulse. It was found using a statistical model that, although the system is excited above its isomerization barrier energy, the actual isomerization from linear to monocyclic conformation takes place on a very long time scale of up to hundreds of microseconds. This finding may indicate a general phenomenon that can affect the interstellar medium chemistry of large molecule formation as well as other gas phase processes.

2.
Phys Rev Lett ; 119(10): 103202, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949158

RESUMO

Autoresonance (AR) cooling of a bunch of ions oscillating inside an electrostatic ion beam trap is demonstrated for the first time. The relatively wide initial longitudinal velocity distribution is reduced by at least an order of magnitude using AR acceleration and ramping forces. The hot ions escaping the bunch are not lost from the system but continue to oscillate in the trap outside of the bunch and may be further cooled by successive AR processes. Ion-ion collisions inside the bunch close to the turning points in the trap's mirrors contribute to the thermalization of the ions. This cooling method can be applied to any mass and any charge.

3.
Rev Sci Instrum ; 88(5): 053101, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571459

RESUMO

A Velocity Map Imaging (VMI) spectrometer has been designed and integrated with an electrostatic ion beam trap to study delayed electron emission from trapped polyatomic anions upon photodetachment. The VMI spectrometer is small in size and can record a wide range of photoelectron energies, with variable magnification. Delayed electron emission can be recorded in our experimental setup for any time duration after the photoexcitation of the polyatomic anions. Experiments were carried out with trapped O- and C5- ions to demonstrate the capability of the spectrometer. Delayed electron emissions from C5- as well as prompt photoelectrons from O- were detected by the VMI spectrometer upon photoexcitation. The design and performance of the spectrometer are presented in detail.

4.
Rev Sci Instrum ; 87(11): 113302, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910333

RESUMO

Ions in an ion bunch trapped inside an Electrostatic Ion Beam Trap (EIBT) exhibit collective oscillations within the bunch under the influence of an external driving force. These internal oscillations have been measured explicitly using a new method with a particle detector outside the EIBT. In this approach, the evolving ion bunch is monitored along the entire trap length, in contrast to the localized single point measurements that are often carried out in other techniques. In the present study, quadrupole oscillations have been measured for the first time in an EIBT along with the dipole oscillations that were measured previously. The frequency of the quadrupole oscillation is found to be about twice the dipole oscillation frequency. This is in agreement with the prediction of a theoretical model.

5.
Nat Commun ; 7: 12566, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558907

RESUMO

Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that are absent in the parent compounds. A prominent example is the appearance of highly conducting and superconducting states at the interface between LaAlO3 and SrTiO3. Here we report an emergent phenomenon at the LaMnO3/SrTiO3 interface where an antiferromagnetic Mott insulator abruptly transforms into a nanoscale inhomogeneous magnetic state. Upon increasing the thickness of LaMnO3, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic nanoislands, which display thermally activated moment reversals in response to an in-plane magnetic field. The observed superparamagnetic state manifests the emergence of thermodynamic electronic phase separation in which metallic ferromagnetic islands nucleate in an insulating antiferromagnetic matrix. We derive a model that captures the sharp onset and the thickness dependence of the magnetization. Our model suggests that a nearby superparamagnetic-ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics.

6.
Rev Sci Instrum ; 87(6): 063115, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370434

RESUMO

An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

7.
Sci Rep ; 5: 7598, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25564043

RESUMO

The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

8.
Rev Sci Instrum ; 84(5): 053106, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742531

RESUMO

We describe a technique to measure absolute photo-induced cross sections for cluster anions stored in an electrostatic ion beam trap (EIBT) with a central deflector. The setup allows determination of total photo-destruction cross sections as well as partial cross sections for fragmentation and electron detachment. The unique properties of this special EIBT setup are investigated and illustrated using small Al(n)(-) clusters.

9.
Rev Sci Instrum ; 83(7): 073702, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22852696

RESUMO

We describe a new type of scanning probe microscope based on a superconducting quantum interference device (SQUID) that resides on the apex of a sharp tip. The SQUID-on-tip is glued to a quartz tuning fork which allows scanning at a tip-sample separation of a few nm. The magnetic flux sensitivity of the SQUID is 1.8 µΦ(0)/√Hz and the spatial resolution is about 200 nm, which can be further improved. This combination of high sensitivity, spatial resolution, bandwidth, and the very close proximity to the sample provides a powerful tool for study of dynamic magnetic phenomena on the nanoscale. The potential of the SQUID-on-tip microscope is demonstrated by imaging of the vortex lattice and of the local ac magnetic response in superconductors.

10.
Phys Rev Lett ; 105(10): 103202, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867518

RESUMO

Individual product channels in the dissociative recombination of deuterated hydronium ions and cold electrons are studied in an ion storage ring by velocity imaging using spatial and mass-sensitive detection of the neutral reaction fragments. Initial and final molecular excitation are analyzed, finding the outgoing water molecules to carry internal excitation of more than 3 eV in 90% of the recombination events. Initial rotation is found to be substantial and in three-body breakup strongly asymmetric energy repartition among the deuterium products is enhanced for hot parent ions.

11.
Rev Sci Instrum ; 81(5): 055105, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20515170

RESUMO

We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.


Assuntos
Transferência de Energia , Congelamento , Íons , Manejo de Espécimes/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
12.
Rev Sci Instrum ; 81(1): 013112, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20113086

RESUMO

We have developed a novel laboratory instrument for studying gas phase, anion-neutral chemistry. To the best of our knowledge, this is the first such apparatus which uses fast merged beams to investigate anion-neutral chemical reactions. As proof-of-principle we have detected the associative detachment reaction H(-)+H-->H(2)+e(-). Here we describe the apparatus in detail and discuss related technical and experimental issues.

13.
Phys Rev Lett ; 102(12): 126806, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19392309

RESUMO

Optical absorption measurements are used to probe the spin polarization in the integer and fractional quantum Hall effect regimes. The system is fully spin polarized only at filling factor nu=1 and at very low temperatures ( approximately 40 mK). A small change in filling factor (deltanu approximately +/-0.01) leads to a significant depolarization. This suggests that the itinerant quantum Hall ferromagnet at nu=1 is surprisingly fragile against increasing temperature, or against small changes in filling factor.

14.
Rev Sci Instrum ; 79(8): 083110, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19044339

RESUMO

We describe a bent electrostatic ion beam trap in which cluster ions of several keV kinetic energy can be stored on a V-shaped trajectory by means of an electrostatic deflector placed between two electrostatic mirrors. While maintaining all the advantages of its linear counterpart [Zajfman et al., Phys. Rev. A 55, R1577 (1997); Dahan et al., Rev. Sci. Instrum. 69, 76 (1998)], such as long storage times, straight segments, and a field-free region for merged or crossed beam experiments, the bent trap allows for simultaneous measurement of charged and neutral fragments and determination of the average kinetic energy released in the fragmentation. These unique properties of the bent trap are illustrated by first results concerning the competition between delayed fragmentation and ionization of Al(n) (-) clusters after irradiation by a short laser pulse.

15.
Phys Rev Lett ; 101(25): 257402, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113751

RESUMO

In this Letter, we study the diffusion properties of photoexcited carriers in coupled quantum wells around the Mott transition. We find that the diffusion of unbound electrons and holes is ambipolar and is characterized by a large diffusion coefficient, similar to that found in p-i-n junctions. Correlation effects in the excitonic phase are found to significantly suppress the carriers' diffusion. We show that this difference in diffusion properties gives rise to the appearance of a photoluminescence ring pattern around the excitation spot at the Mott transition.

16.
Phys Rev Lett ; 101(15): 157003, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18999628

RESUMO

A low concentration of columnar defects is reported to transform a first-order vortex lattice melting line in Bi2Sr2CaCu2O8 crystals into alternating segments of first- and second-order transitions separated by two critical points. As the density of columnar defects is increased, the critical points shift apart and the range of the intermediate second-order transition expands. The measurement of equilibrium magnetization and the mapping of the melting line down to 27 K was made possible by employment of the shaking technique.

17.
Phys Rev Lett ; 99(8): 087001, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17930974

RESUMO

Vortex matter in Bi(2)Sr(2)CaCu(2)O(8) with a low concentration of tilted columnar defects (CDs) was studied using magneto-optical measurements and molecular dynamics simulations. It is found that while the dynamic properties are significantly affected by tilting the magnetic field away from the CDs, the thermodynamic transitions are angle independent. The simulations indicate that vortex pancakes remain localized on the CDs even at large tilting angles. This preserves the vortex thermodynamics, while vortex pinning is considerably weakened due to kink sliding.


Assuntos
Campos Magnéticos , Termodinâmica , Ligas , Magnetismo , Modelos Químicos , Simulação de Dinâmica Molecular , Transição de Fase , Mutação Puntual , Porosidade
18.
Phys Rev Lett ; 98(22): 223202, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17677841

RESUMO

Molecular photofragmentation has been studied by event imaging on HeH+ ions at 32 nm (38.7 eV) in a fast ion beam crossed with the free-electron laser in Hamburg (FLASH), analyzing neutral He product directions and energies. Fragmentation into He(1snl,n > or = 2)+H+ was observed to yield significant photodissociation at 32 nm with an absolute cross section of (1.4+/-0.7) x 10(-18) cm2, releasing energies of 10-20 eV. A clear dominance of photodissociation perpendicular to the laser polarization was found in contrast to the excitation paths so far emphasized in theoretical studies.

19.
Phys Rev Lett ; 98(15): 156803, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17501371

RESUMO

We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0

20.
Phys Rev Lett ; 98(18): 186810, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17501600

RESUMO

We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...