Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(16)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010614

RESUMO

The engagement of cadherins, cell-to-cell adhesion proteins, triggers a dramatic increase in the levels and activity of the Rac/Cdc42 GTPases, through the inhibition of proteasomal degradation. This leads to an increase in transcription and secretion of IL6 family cytokines, activation of their common receptor, gp130, in an autocrine manner and phosphorylation of the signal transducer and activator of transcription-3 (Stat3) on tyrosine-705 by the Jak kinases. Stat3 subsequently dimerizes, migrates to the nucleus and activates the transcription of genes involved in cell division and survival. The Src oncogene also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers a Stat3-ptyr705 increase. Interestingly, at the same time, Src downregulates cadherins in a quantitative manner, while cadherins are required to preserve gp130 levels for IL6 family signalling. Therefore, a fine balance between Src527F/Rac/IL6 and Src527F/cadherin/gp130 levels is in existence, which is required for Stat3 activation. This further demonstrates the important role of cadherins in the activation of Stat3, through preservation of gp130 function. Conversely, the absence of cadherin engagement correlates with low Stat3 activity: In sparsely growing cells, both gp130 and Stat3-ptyr705 levels are very low, despite the fact that cSrc is active in the FAK (focal adhesion kinase)/cSrc complex, which further indicates that the engagement of cadherins is important for Stat3 activation, not just their presence. Furthermore, the caveolin-1 protein downregulates Stat3 through binding and sequestration of cadherins to the scaffolding domain of caveolin-1. We hypothesize that the cadherins/Rac/gp130 axis may be a conserved pathway to Stat3 activation in a number of systems. This fact could have significant implications in Stat3 biology, as well as in drug testing and development.


Assuntos
Caderinas , Caveolina 1 , Caderinas/metabolismo , Caveolina 1/metabolismo , Receptor gp130 de Citocina/genética , Citocinas/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo
2.
Cancer Gene Ther ; 29(10): 1502-1513, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35411090

RESUMO

We previously demonstrated that engagement of cadherins, cell to cell adhesion molecules, triggers a dramatic increase in levels and activity of the Rac/Cdc42 small GTPases, which is followed by secretion of IL6 family cytokines and activation of their common receptor, gp130, in an autocrine manner. This results in phosphorylation of the Signal Transducer and Activator of Transcription-3 (Stat3) on tyrosine-705, which then dimerizes, migrates to the nucleus, and activates transcription of genes involved in cell division and survival. In the present report we demonstrate that, in mouse Balb/c3T3 fibroblasts, mutationally activated Src527F also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers the Stat3-ptyr705 increase. Interestingly, our results also demonstrate that cadherin-11 is required to preserve gp130 levels for IL6 family signaling. At the same time, however, activated Src527F downregulates cadherin-11, in a quantitative manner. As a result, Src527F expression to intermediate levels allows sufficient cadherin-11, hence gp130 levels for Stat3 activation, as expected. However, expressed to high levels, Src527F eliminates cadherin-11, hence gp130 signaling, thus abolishing Stat3-ptyr705 stimulation. Taken together, these data establish for the first time a loop between Src, cadherin-11, gp130, and Stat3 activation. This fine balance between Src527F and cadherin-11 levels which is required for Stat3 activation and cellular survival could have significant therapeutic implications.


Assuntos
Interleucina-6 , Fator de Transcrição STAT3 , Animais , Camundongos , Caderinas/genética , Caderinas/metabolismo , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Genes src , Proteínas rac de Ligação ao GTP/metabolismo
4.
Exp Cell Res ; 411(1): 112731, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270980

RESUMO

Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins, and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.

5.
Exp Cell Res ; 404(1): 112601, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957118

RESUMO

Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.


Assuntos
Caderinas/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Adesão Celular/fisiologia , Sobrevivência Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia
6.
J Vis Exp ; (156)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32176212

RESUMO

Cadherins play an important role in the regulation of cell differentiation as well as neoplasia. Here we describe the origins and methods of the induction of differentiation of two mouse breast epithelial cell lines, HC11 and EpH4, and their use to study complementary stages of mammary gland development and neoplastic transformation. The HC11 mouse breast epithelial cell line originated from the mammary gland of a pregnant Balb/c mouse. It differentiates when grown to confluence attached to a plastic Petri dish surface in medium containing fetal calf serum and Hydrocortisone, Insulin and Prolactin (HIP medium). Under these conditions, HC11 cells produce the milk proteins ß-casein and whey acidic protein (WAP), similar to lactating mammary epithelial cells, and form rudimentary mammary gland-like structures termed "domes". The EpH4 cell line was derived from spontaneously immortalized mouse mammary gland epithelial cells isolated from a pregnant Balb/c mouse. Unlike HC11, EpH4 cells can fully differentiate into spheroids (also called mammospheres) when cultured under three-dimensional (3D) growth conditions in HIP medium. Cells are trypsinized, suspended in a 20% matrix consisting of a mixture of extracellular matrix proteins produced by Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, plated on top of a layer of concentrated matrix coating a plastic Petri dish or multiwell plate, and covered with a layer of 10% matrix-containing HIP medium. Under these conditions, EpH4 cells form hollow spheroids that exhibit apical-basal polarity, a hollow lumen, and produce ß-casein and WAP. Using these techniques, our results demonstrated that the intensity of the cadherin/Rac signal is critical for the differentiation of HC11 cells. While Rac1 is necessary for differentiation and low levels of activated RacV12 increase differentiation, high RacV12 levels block differentiation while inducing neoplasia. In contrast, EpH4 cells represent an earlier stage in mammary epithelial differentiation, which is inhibited by even low levels of RacV12.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Animais , Caderinas/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Transformação Celular Neoplásica , Meios de Cultura/química , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Proteínas do Leite/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
7.
Anticancer Res ; 39(6): 2749-2756, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31177110

RESUMO

BACKGROUND/AIM: The differentiation of the mouse breast epithelial cell line HC11 is known to require confluence as well as the addition of hydrocortisone, insulin and prolactin. MATERIALS AND METHODS: Since confluence, which triggers the engagement of the cell-to-cell adhesion molecule E-cadherin, induces a dramatic increase in the activity of signal transducer and activator of transcription-3 (Stat3), we examined the role of Stat3 in HC11 cell differentiation. RESULTS: Stat3 inhibition abolished differentiation, indicating that Stat3 activity is critically required. However, expression of the mutationally activated form of Stat3 (Stat3C), rather than promoting, it was found to block cell differentiation, even when expressed in low levels, and in the absence of full neoplastic conversion. CONCLUSION: The strength of the E-cadherin/Stat3 signal is key for the outcome of the differentiation process.


Assuntos
Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Mutação , Fosforilação , Transdução de Sinais , Tirosina/metabolismo
8.
Biochem Cell Biol ; 97(5): 638-646, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30986357

RESUMO

We recently demonstrated that Cav1 (caveolin-1) is a negative regulator of Stat3 (signal transducer and activator of transcription-3) activity in mouse fibroblasts and human lung carcinoma SHP77 cells. We now examined whether the cellular context may affect their levels as well as the relationship between them, by assessing Cav1 and Stat3-ptyr705 amounts in different cell lines. In MDA-MB-231, A549, and HaCat cells, Cav1 levels were high and Stat3-ptyr705 levels were low, consistent with the notion of a negative effect of endogenous Cav1 on Stat3-ptyr705 levels in these lines. In addition, manipulation of Cav1 levels revealed a negative effect in MCF7 and mouse fibroblast cells, while Cav1 upregulation induced apoptosis in MCF7 cells. In contrast, however, line MRC9 had high Cav1 and high Stat3-ptyr705 levels, indicating that high Cav1 is insufficient to reduce Stat3-ptyr705 levels in this line. MCF7 and LuCi6 cells had very low Cav1 and Stat3-ptyr705 levels, indicating that the low Stat3-ptyr705 can be independent from Cav1 levels altogether. Our results reveal a further level of complexity in the relationship between Cav1 and Stat3-ptyr705 than previously thought. In addition, we demonstrate that in a feedback loop, Stat3 inhibition upregulates Cav1 in HeLa cells but not in other lines tested.


Assuntos
Neoplasias da Mama/metabolismo , Caveolina 1/metabolismo , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Animais , Caveolina 1/antagonistas & inibidores , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
9.
Cancers (Basel) ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717267

RESUMO

Gap junctional, intercellular communication (GJIC) is interrupted in cells transformed by oncogenes such as activated Src. The Src effector, Ras, is required for this effect, so that Ras inhibition restores GJIC in Src-transformed cells. Interestingly, the inhibition of the Src effector phosphatidyl-inositol-3 kinase (PI3k) or Signal Transducer and Activator of Transcription-3 (Stat3) pathways does not restore GJIC. In the contrary, inhibition of PI3k or Stat3 in non-transformed rodent fibroblasts or epithelial cells or certain human lung carcinoma lines with extensive GJIC inhibits communication, while mutational activation of PI3k or Stat3 increases GJIC. Therefore, it appears that oncogenes such as activated Src have a dual role upon GJIC; acting as inhibitors of communication through the Ras pathway, and as activators through activation of PI3k or Stat3. In the presence of high Src activity the inhibitory functions prevail so that the net effect is gap junction closure. PI3k and Stat3 constitute potent survival signals, so that their inhibition in non-transformed cells triggers apoptosis which, in turn, has been independently demonstrated to suppress GJIC. The interruption of gap junctional communication would confine the apoptotic event to single cells and this might be essential for the maintenance of tissue integrity. We hypothesize that the GJIC activation by PI3k or Stat3 may be linked to their survival function.

10.
Exp Cell Res ; 361(1): 112-125, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031557

RESUMO

It was previously demonstrated that differentiation of some established breast epithelial cell lines requires confluence and stimulation with hydrocortisone, insulin and prolactin inducers. We and others previously demonstrated that E-cadherin engagement, which is favored under conditions of confluence, increases the levels and activity of the Rac small GTPase. To investigate the functional relationship between the transforming ability of Rac and its role as an integral component of the differentiative E-cadherin signaling pathway, we introduced a mutationally activated form of Rac, RacV12, into the mouse breast epithelium-derived cell line, HC11. Our results demonstrate that the strength of the Rac signal is key for the outcome of the differentiation process; cRac1 is critically required for differentiation, and at low levels, mutationally activated RacV12 is able to increase differentiation, presumably reinforcing the E-cadherin/Rac differentiative signal. However, high RacV12 expression blocked differentiation concomitant with E-cadherin downregulation, while inducing neoplastic transformation. Therefore, the intensity of the Rac signal is a central determinant in the balance between cell proliferation vs differentiation, two fundamentally opposed processes, a finding which could also have important therapeutic implications.


Assuntos
Caderinas/metabolismo , Diferenciação Celular , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Transdução de Sinais
11.
Oncotarget ; 8(68): 113034-113065, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348886

RESUMO

The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

12.
Data Brief ; 7: 490-2, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27014737

RESUMO

We analysed STAT5A gene expression in breast cancer using the Oncomine database. We exemplify four representative studies showing that STAT5A is generally downregulated in breast cancer.

13.
Cytokine ; 82: 70-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26876578

RESUMO

Here we report that the STAT5A transcription factor is a direct p53 transcriptional target gene. STAT5A is well expressed in p53 wild type cells but not in p53-null cells. Inhibition of p53 reduces STAT5A expression. DNA damaging agents such as doxorubicin also induced STAT5A expression in a p53 dependent manner. Two p53 binding sites were mapped in the STAT5A gene and named PBS1 and PBS2; these sites were sufficient to confer p53 responsiveness in a luciferase reporter gene. Chromatin immunoprecipitation experiments revealed that PBS2 has constitutive p53 bound to it, while p53 binding to PBS1 required DNA damage. In normal human breast lobules, weak p53 staining correlated with regions of intense STAT5A staining. Interestingly, in a cohort of triple negative breast tumor tissues there was little correlation between regions of p53 and STAT5A staining, likely reflecting a high frequency of p53 mutations that stabilize the protein in these tumors. We thus reveal an unexpected connection between cytokine signaling and p53.


Assuntos
Neoplasias da Mama/metabolismo , Dano ao DNA , Mutação , Elementos de Resposta , Fator de Transcrição STAT5/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , Células MCF-7 , Fator de Transcrição STAT5/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
14.
Biomol Concepts ; 6(5-6): 383-99, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26565555

RESUMO

Both cell-cell and cell-matrix adhesion are important for epithelial cell differentiation and function. Classical cadherins mediate cell to cell interactions and are potent activators of the signal transducer and activator of transcription (Stat3), thereby offering survival signaling. While the epithelial (E)-cadherin is required for cells to remain tightly associated within differentiated epithelial tissues, cadherin-11 promotes invasion and metastasis, preferentially to the bone. Cell adhesion to the extracellular matrix is mediated through the integrin receptors that bind to the focal adhesion kinase (FAK)/Src complex, thus activating downstream effectors such as Ras/Erk1/2 and PI3k/Akt, but not Stat3. Therefore, at high densities of cultured cells or in epithelial tissues, co-ordinate activation of the complementary cadherin/Stat3 and integrin/FAK pathways can greatly enhance survival and growth of tumor cells. In neoplastically transformed cells on the other hand, a variety of oncogenes including activated Src or receptor tyrosine kinases, activate both pathways. Still, most single-agent therapies directed against these signaling pathways have proven disappointing in the clinic. Combined targeting of the Src/FAK and Stat3 pathways with inhibitory drugs would be expected to have greater efficacy in inhibiting tumor cell survival, and enhancing sensitivity to conventional cytotoxic drugs for treatment of metastatic disease.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Caderinas/metabolismo , Adesão Celular , Sobrevivência Celular , Humanos , Modelos Biológicos , Metástase Neoplásica , Neoplasias/patologia
15.
Exp Cell Res ; 336(2): 223-31, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26187405

RESUMO

Gap junctions are channels that connect the cytoplasm of adjacent cells. Oncogenes such as the middle Tumor antigen of polyoma virus (mT) are known to suppress gap junctional, intercellular communication (GJIC). mT associates with and is tyrosine-phosphorylated by cSrc family members. Specific mT phosphotyrosines provide docking sites for the phosphotyrosine binding domain of Shc (mT-tyr250) or the SH2 domain of the regulatory subunit of the phosphatidylinositol-3 kinase (PI3k, mT-tyr315). Binding results in the activation of their downstream signaling cascades, Ras/Raf/Erk and PI3 kinase/Akt, respectively, both of which are needed for full neoplastic transformation. To examine the effect of mT-initiated pathways upon gap junctional communication, GJIC was quantitated in rat liver epithelial T51B cells expressing mT-mutants, using a novel technique of in situ electroporation. The results demonstrate for the first time that, although even low levels of wild-type mT are sufficient to interrupt gap junctional communication, GJIC suppression still requires an intact tyr-250 site, that is activation of the Ras pathway. In sharp contrast, activation of the PI3k pathway is not required for GJIC suppression, indicating that GJIC suppression is independent of full neoplastic conversion and the concomitant morphological changes. Interestingly, expression of a constitutively active, myristylated form of the catalytic subunit of PI3k, p110, or the constitutively active mutants E545K and H1047R increased GJIC, while pharmacological inhibition of PI3k eliminated communication. Therefore, although PI3k is growth promoting and in an activated form it can act as an oncogene, it actually plays a positive role upon gap junctional, intercellular communication.


Assuntos
Antígenos Transformantes de Poliomavirus/genética , Comunicação Celular/genética , Junções Comunicantes/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Androstadienos/farmacologia , Animais , Sítios de Ligação/genética , Domínio Catalítico , Linhagem Celular , Transformação Celular Neoplásica/genética , Cromonas/farmacologia , Eletroporação , Fígado/citologia , Morfolinas/farmacologia , Mutação/genética , Inibidores de Fosfoinositídeo-3 Quinase , Ligação Proteica/genética , Ratos , Transdução de Sinais , Wortmanina
16.
Cancer Cell ; 28(2): 210-24, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26212250

RESUMO

Oncolytic viruses designed to attack malignant cells can in addition infect and destroy tumor vascular endothelial cells. We show here that this expanded tropism of oncolytic vaccinia virus to the endothelial compartment is a consequence of VEGF-mediated suppression of the intrinsic antiviral response. VEGF/VEGFR2 signaling through Erk1/2 and Stat3 leads to upregulation, nuclear localization, and activation of the transcription repressor PRD1-BF1/Blimp1. PRD1-BF1 does not contribute to the mitogenic effects of VEGF, but directly represses genes involved in type I interferon (IFN)-mediated antiviral signaling. In vivo suppression of VEGF signaling diminishes PRD1-BF1/Blimp1 expression in tumor vasculature and inhibits intravenously administered oncolytic vaccinia delivery to and consequent spread within the tumor.


Assuntos
Neoplasias/virologia , Vírus Oncolíticos/fisiologia , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neoplasias/irrigação sanguínea , Neoplasias/terapia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/virologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Interferência de RNA , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos , Vaccinia virus/fisiologia
17.
J Vis Exp ; (92): e51710, 2014 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-25350637

RESUMO

In this technique, cells are cultured on a glass slide that is partly coated with indium-tin oxide (ITO), a transparent, electrically conductive material. A variety of molecules, such as peptides or oligonucleotides can be introduced into essentially 100% of the cells in a non-traumatic manner. Here, we describe how it can be used to study intercellular, gap junctional communication. Lucifer yellow penetrates into the cells when an electric pulse, applied to the conductive surface on which they are growing, causes pores to form through the cell membrane. This is electroporation. Cells growing on the nonconductive glass surface immediately adjacent to the electroporated region do not take up Lucifer yellow by electroporation but do acquire the fluorescent dye as it is passed to them via gap junctions that link them to the electroporated cells. The results of the transfer of dye from cell to cell can be observed microscopically under fluorescence illumination. This technique allows for precise quantitation of gap junctional communication. In addition, it can be used for the introduction of peptides or other non-permeant molecules, and the transfer of small electroporated peptides via gap junctions to inhibit the signal in the adjacent, non-electroporated cells is a powerful demonstration of signal inhibition.


Assuntos
Comunicação Celular/fisiologia , Eletroporação/métodos , Junções Comunicantes/fisiologia , Compostos de Estanho/química , Junções Aderentes/fisiologia , Animais , Adesão Celular/fisiologia , Eletroporação/instrumentação , Células Epiteliais/citologia , Ratos
18.
J Pharmacol Exp Ther ; 349(3): 458-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696041

RESUMO

Signal transducer and activator of transcription 3 (STAT3) has been implicated as a hub for multiple oncogenic pathways. The constitutive activation of STAT3 is present in several cancers, including gliomas (GBMs), and is associated with poor therapeutic responses. Phosphorylation of STAT3 triggers its dimerization and nuclear transport, where it promotes the transcription of genes that stimulate tumor growth. In light of this role, inhibitors of the STAT3 pathway are attractive therapeutic targets for cancer. To this end, we evaluated the STAT3-inhibitory activities of three compounds (CPA-7 [trichloronitritodiammineplatinum(IV)], WP1066 [(S,E)-3-(6-bromopyridin-2-yl)-2-cyano-N-(1-phenylethyl)acrylamide, C17H14BrN3O], and ML116 [4-benzyl-1-{thieno[2,3-d]pyrimidin-4-yl}piperidine, C18H19N3S]) in cultured rodent and human glioma cells, including GBM cancer stem cells. Our results demonstrate a potent induction of growth arrest in GBM cells after drug treatment with a concomitant induction of cell death. Although these compounds were effective at inhibiting STAT3 phosphorylation, they also displayed variable dose-dependent inhibition of STAT1, STAT5, and nuclear factor κ light-chain enhancer of activated B cells. The therapeutic efficacy of these compounds was further evaluated in peripheral and intracranial mouse tumor models. Whereas CPA-7 elicited regression of peripheral tumors, both melanoma and GBM, its efficacy was not evident when the tumors were implanted within the brain. Our data suggest poor permeability of this compound to tumors located within the central nervous system. WP1066 and ML116 exhibited poor in vivo efficacy. In summary, CPA-7 constitutes a powerful anticancer agent in models of peripheral solid cancers. Our data strongly support further development of CPA-7-derived compounds with increased permeability to enhance their efficacy in primary and metastatic brain tumors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/secundário , Fator de Transcrição STAT3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Clorados/farmacocinética , Compostos Clorados/farmacologia , Compostos Clorados/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Compostos Heterocíclicos com 2 Anéis/farmacologia , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Piperidinas/farmacocinética , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Compostos de Platina/farmacocinética , Compostos de Platina/farmacologia , Compostos de Platina/uso terapêutico , Piridinas/farmacocinética , Piridinas/farmacologia , Piridinas/uso terapêutico , Fator de Transcrição STAT3/genética , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Distribuição Tecidual , Tirfostinas/farmacocinética , Tirfostinas/farmacologia , Tirfostinas/uso terapêutico
19.
Cancers (Basel) ; 6(2): 646-62, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24670366

RESUMO

Gap junctions are channels linking the interiors of neighboring cells. A reduction in gap junctional intercellular communication (GJIC) correlates with high cell proliferation, while oncogene products such as Src suppress GJIC, through the Ras/Raf/Erk and other effector pathways. High Src activity was found to correlate with high levels of the Src effector, Signal Transducer and Activator of Transcription-3 (Stat3) in its tyrosine-705 phosphorylated, i.e., transcriptionally activated form, in the majority of Non-Small Cell Lung Cancer lines examined. However, Stat3 inhibition did not restore GJIC in lines with high Src activity. In the contrary, Stat3 inhibition in normal cells or in lines with low Src activity and high GJIC eliminated gap junctional communication. Therefore, despite the fact that Stat3 is growth promoting and in an activated form acts like an oncogene, it is actually required for junctional permeability.

20.
Anticancer Res ; 33(10): 4401-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24123009

RESUMO

BACKGROUND: We have previously demonstrated a positive correlation between SRC and its effector signal transducer and activator of transcription-3 (STAT3), and a reverse relation between SRC and gap junctional communication (GJIC) in seven non-small cell lung cancer (NSCLC) lines. Since a number of oncogenes besides SRC can affect GJIC, here we examined the actual contribution of the SRC/STAT3 axis to GJIC suppression. MATERIALS AND METHODS: SRC and STAT3 activity levels were examined in SK-LuCi-6, LC-T, QU-DB, SW-1573, BH-E, Calu-6, FR-E, SK-MES, H1299, BEN, WT-E, A549 and SHP-77 cells by western blott analysis, probing with antibodies specific for SRC-ptyr418 or STAT3-ptyr705. GJIC was examined by in situ electroporation. RESULTS: Confluence of all cultured NSCLC cells tested induces a dramatic increase in STAT3 activity, which is independent of SRC action. In addition, the LC-T line had high STAT3-705, despite the fact that SRC-418 expression was low, indicating that other, SRC-independent factors must be responsible for STAT3 activation and GJIC suppression in these cells; however, BH-E and SHP-77 cells with low GJIC, both SRC-418 and STAT3-705 expression were low, indicating that GJIC suppression can be independent of the SRC/STAT3 axis altogether. Our results also show that STAT3 inhibition does not restore GJIC in any of the examined lines, while in the non-transformed rat F111 fibroblast line which has extensive GJIC, STAT3 inhibition actually eliminated junctional permeability. CONCLUSION: Our results indicate a further level of complexity in the relationship between SRC, STAT3 and GJIC in NSCLC than what has been previously demonstrated. In addition, STAT3 is actually required for, rather than suppressing GJIC.


Assuntos
Comunicação Celular , Junções Comunicantes/fisiologia , Fator de Transcrição STAT3/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Dasatinibe , Regulação para Baixo , Expressão Gênica , Humanos , Neoplasias Pulmonares , Piridonas/farmacologia , Pirimidinas/farmacologia , Ratos , Tiazóis/farmacologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA