Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Front Pharmacol ; 13: 1012778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467104

RESUMO

The relationship between depression, its etiology and therapy, and the cAMP signaling system have been studies for decades. This review will focus on cAMP, G proteins and adenylyl cyclase and depression or antidepressant action. Both human and animal studies are compared and contrasted. It is concluded that there is some synteny in the findings that cAMP signaling is attenuated in depression and that this is reversed by successful antidepressant therapy. The G protein that activates adenylyl cyclase, Gαs, appears to have diminished access to adenylyl cyclase in depression, and this is rectified by successful antidepressant treatment. Unfortunately, attempts to link specific isoforms of adenylyl cyclase to depression or antidepressant action suffer from discontinuity between human and animal studies.

2.
Mol Psychiatry ; 27(3): 1640-1646, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969978

RESUMO

In contrast to healthy controls, the heterotrimeric G protein, Gsalpha (Gsα) is ensconced predominantly in lipid rafts in subjects with major depressive disorder (MDD) resulting in impaired stimulation of adenylyl cyclase. In this small proof-of-concept study, we examined the hypothesis that translocation of Gsα from lipid rafts toward a more facile activation of adenylyl cyclase is a biomarker for clinical response to antidepressants. There were 49 subjects with MDD (HamD17 score ≥15) and 59 healthy controls at the screen visit. The AlphaScreen (PerkinElmer) assay measured both basal activity and prostaglandin E1 (PGE1) stimulation of Gsα-adenylyl cyclase to assess the extent of coupling of Gsα with adenylyl cyclase. At screen, platelet samples obtained from MDD subjects revealed significantly lower PGE1 activation of adenylyl cyclase activity than controls (p = 0.02). Subsequently, 19 consenting MDD subjects completed a 6-week open label antidepressant treatment trial. The 11 antidepressant responders (HamD17 improvement ≥50% from screen) revealed significant increase in PGE1-stimulated adenylyl cyclase compared to non-responders (p = 0.05) with an effect size of 0.83 for the PGE1/Gsα lipid-raft biomarker. PGE1 stimulation increased by ≥30% from screen assessment in eight responders (72.7%) and two non-responders (25.0%) [Fisher exact = 0.07] with a positive predictive value for response of 80.0%. In this small, pilot study, increased PGE1 stimulated adenylyl cyclase was associated with antidepressant response in MDD subjects. These data suggest that a simple, high-throughput-capable assay for depression and antidepressant response can be developed. Future studies are needed to evaluate the utility of this biomarker for the treatment of MDD.


Assuntos
Adenilil Ciclases , Transtorno Depressivo Maior , Adenilil Ciclases/metabolismo , Alprostadil , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Biomarcadores , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Projetos Piloto
3.
Mol Pharmacol ; 100(2): 66-81, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34011569

RESUMO

Termination of antidepressant therapy often has negative consequences. Although symptoms of antidepressant withdrawal are widely recognized, the molecular processes that underlie them are not well characterized. We show that certain aspects of Gα s signaling remain suppressed after antidepressant withdrawal, even after others have reverted to baseline. Antidepressant treatment causes translocation of Gα s protein from lipid rafts to nonraft membrane regions. This results in augmented Gα s signaling, including facilitated activation of adenylyl cyclase and increased cAMP accumulation. Using CC6 or SK-N-SH cells and a lipid raft-localized cAMP sensor, we show that Gα s signaling is reduced in lipid rafts, even while signaling is enhanced elsewhere in the cell. These signaling changes mirror the changes in Gα s localization observed after antidepressant treatment. Furthermore, we show that suppression of Gα s signaling in lipid rafts persists at least 24 hours after cessation of antidepressant treatment. Gα s localization was quantified after membrane isolation and sequential detergent extraction. We show that suppression of lipid raft Gα s signaling persists for an extended time period after antidepressant withdrawal, whereas increased nonraft membrane Gα s signaling reverts partially or fully upon cessation of antidepressant treatment. Translocation of Gα s out of lipid rafts is also persistent. These events may reflect cellular adaptations to antidepressant treatment that contribute to antidepressant discontinuation syndromes and may aid in the discovery of new treatments and strategies to mitigate the symptoms of depression and antidepressant withdrawal. SIGNIFICANCE STATEMENT: This work explores, for the first time, the effects of antidepressants on Gα s signaling after drug withdrawal. This provides novel insight into the cellular and molecular processes affected by antidepressant drugs and their persistence after discontinuation of treatment.


Assuntos
Antidepressivos/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
4.
Elife ; 102021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856345

RESUMO

Migraine is the sixth most prevalent disease worldwide but the mechanisms that underlie migraine chronicity are poorly understood. Cytoskeletal flexibility is fundamental to neuronal-plasticity and is dependent on dynamic microtubules. Histone-deacetylase-6 (HDAC6) decreases microtubule dynamics by deacetylating its primary substrate, α-tubulin. We use validated mouse models of migraine to show that HDAC6-inhibition is a promising migraine treatment and reveal an undiscovered cytoarchitectural basis for migraine chronicity. The human migraine trigger, nitroglycerin, produced chronic migraine-associated pain and decreased neurite growth in headache-processing regions, which were reversed by HDAC6 inhibition. Cortical spreading depression (CSD), a physiological correlate of migraine aura, also decreased cortical neurite growth, while HDAC6-inhibitor restored neuronal complexity and decreased CSD. Importantly, a calcitonin gene-related peptide receptor antagonist also restored blunted neuronal complexity induced by nitroglycerin. Our results demonstrate that disruptions in neuronal cytoarchitecture are a feature of chronic migraine, and effective migraine therapies might include agents that restore microtubule/neuronal plasticity.


Migraines are a common brain disorder that affects 14% of the world's population. For many people the main symptom of a migraine is a painful headache, often on one side of the head. Other symptoms include increased sensitivity to light or sound, disturbed vision, and feeling sick. These sensory disturbances are called aura and they often occur before the headache begins. One particularly debilitating subset of migraines are chronic migraines, in which patients experience more than 15 headache days per month. Migraine therapies are often only partially effective or poorly tolerated, making it important to develop new drugs for this condition, but unfortunately, little is known about the molecular causes of migraines. To bridge this gap, Bertels et al. used two different approaches to cause migraine-like symptoms in mice. One approach consisted on giving mice nitroglycerin, which dilates blood vessels, produces hypersensitivity to touch, and causes photophobia in both humans and mice. In the second approach, mice underwent surgery and potassium chloride was applied onto the dura, a thick membrane that surrounds the brain. This produces cortical spreading depression, an event that is linked to migraine auras and involves a wave of electric changes in brain cells that slowly propagates across the brain, silencing brain electrical activity for several minutes. Using these approaches, Bertels et al. studied whether causing chronic migraine-like symptoms in mice is associated with changes in the structures of neurons, focusing on the effects of migraines on microtubules. Microtubules are cylindrical protein structures formed by the assembly of smaller protein units. In most cells, microtubules assemble and disassemble depending on what the cell needs. Neurons need stable microtubules to establish connections with other neurons. The experiments showed that provoking chronic migraines in mice led to a reduction in the numbers of connections between different neurons. Additionally, Bertels et al. found that inhibiting HDAC6 (a protein that destabilizes microtubules) reverses the structural changes in neurons caused by migraines and decreases migraine symptoms. The same effects are seen when a known migraine treatment strategy, known as CGRP receptor blockade, is applied. These results suggest that chronic migraines may involve decreased neural complexity, and that the restoration of this complexity by HDAC6 inhibitors could be a potential therapeutic strategy for migraine.


Assuntos
Encéfalo/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Microtúbulos/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Desacetilase 6 de Histona/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microtúbulos/enzimologia , Microtúbulos/patologia , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/enzimologia , Transtornos de Enxaqueca/fisiopatologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Nitroglicerina , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/efeitos dos fármacos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
5.
Mol Psychiatry ; 26(6): 2402-2414, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32327735

RESUMO

While several therapeutic strategies exist for depression, most antidepressant drugs require several weeks before reaching full biochemical efficacy and remission is not achieved in many patients. Therefore, biomarkers for depression and drug-response would help tailor treatment strategies. This study made use of banked human lymphoblast cell lines (LCLs) from normal and depressed subjects; the latter divided into remitters and non-remitters. Due to the fact that previous studies have shown effects on growth factors, cytokines, and elements of the cAMP-generating system as potential biomarkers for depression and antidepressant action, these were examined in LCLs. Initial gene and protein expression profiles for signaling cascades related to neuroendocrine and inflammatory functions differ among the three groups. Growth factor genes, including VEGFA and BDNF were significantly down-regulated in cells from depressed subjects. In addition, omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to act as both antidepressants and anti-inflammatories, but the mechanisms for these effects are not established. Here we showed that n-3 PUFAs and escitalopram (selective serotonin reuptake inhibitors, SSRIs) treatment increased adenylyl cyclase (AC) and BDNF gene expression in LCLs. These data are consistent with clinical observations showing that n-3 PUFA and SSRI have antidepressant affects, which may be additive. Contrary to observations made in neuronal and glial cells, n-3 PUFA treatment attenuated cAMP accumulation in LCLs. However, while lymphoblasts show paradoxical responses to neurons and glia, patient-derived lymphoblasts appear to carry potential depression biomarkers making them an important tool for studying precision medicine in depressive patients. Furthermore, these data validate usefulness of n-3 PUFAs in treatment for depression.


Assuntos
Ácidos Graxos Ômega-3 , Inibidores Seletivos de Recaptação de Serotonina , Antidepressivos/farmacologia , Biomarcadores , Linhagem Celular , Depressão , Humanos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
6.
Mol Psychiatry ; 26(9): 4605-4615, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504049

RESUMO

Evidence from epidemiological and laboratory studies, as well as randomized placebo-controlled trials, suggests supplementation with n-3 polyunsaturated fatty acids (PUFAs) may be efficacious for treatment of major depressive disorder (MDD). The mechanisms underlying n-3 PUFAs potential therapeutic properties remain unknown. There are suggestions in the literature that glial hypofunction is associated with depressive symptoms and that antidepressants may normalize glial function. In this study, induced pluripotent stem cells (iPSC)-derived neuronal stem cell lines were generated from individuals with MDD. Astrocytes differentiated from patient-derived neuronal stem cells (iNSCs) were verified by GFAP. Cells were treated with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or stearic acid (SA). During astrocyte differentiation, we found that n-3 PUFAs increased GFAP expression and GFAP positive cell formation. BDNF and GDNF production were increased in the astrocytes derived from patients subsequent to n-3 PUFA treatment. Stearic Acid (SA) treatment did not have this effect. CREB activity (phosphorylated CREB) was also increased by DHA and EPA but not by SA. Furthermore, when these astrocytes were treated with n-3 PUFAs, the cAMP antagonist, RP-cAMPs did not block n-3 PUFA CREB activation. However, the CREB specific inhibitor (666-15) diminished BDNF and GDNF production induced by n-3 PUFA, suggesting CREB dependence. Together, these results suggested that n-3 PUFAs facilitate astrocyte differentiation, and may mimic effects of some antidepressants by increasing production of neurotrophic factors. The CREB-dependence and cAMP independence of this process suggests a manner in which n-3 PUFA could augment antidepressant effects. These data also suggest a role for astrocytes in both MDD and antidepressant action.


Assuntos
Transtorno Depressivo Maior , Ácidos Graxos Ômega-3 , Células-Tronco Neurais , Astrócitos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Humanos , Fatores de Crescimento Neural , Neurogênese
7.
J Neurosci ; 40(20): 4033-4041, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32284336

RESUMO

Cytoskeletal proteins and post-translational modifications play a role in mood disorders. Post-translational modifications of tubulin also alter microtubule dynamics. Furthermore, tubulin interacts closely with Gαs, the G-protein responsible for activation of adenylyl cyclase. Postmortem tissue derived from depressed suicide brain showed increased Gαs in lipid-raft domains compared with normal subjects. Gαs, when ensconced in lipid rafts, couples less effectively with adenylyl cyclase to produce cAMP, and this is reversed by antidepressant treatment. A recent in vitro study demonstrated that tubulin anchors Gαs to lipid rafts and that increased tubulin acetylation (due to HDAC6 inhibition) and antidepressant treatment decreased the proportion of Gαs complexed with tubulin. This suggested that deacetylated-tubulin might be more prevalent in depression. This study examined tubulin acetylation in whole-tissue homogenate, plasma membrane, and lipid-raft membrane domains in tissue from normal control subjects, depressed suicides, and depressed nonsuicides (human males/females). While tissue homogenate showed no changes in tubulin acetylation between control, depressed suicides, and depressed nonsuicides, plasma membrane-associated tubulin showed significant decreases in acetylation from depressed suicides and depressed nonsuicides compared with controls. No change was seen in expression of the enzymes responsible for tubulin acetylation or deacetylation. These data suggest that, during depression, membrane-localized tubulin maintains a lower acetylation state, permitting increased sequestration of Gαs in lipid-raft domains, where it is less likely to couple to adenylyl cyclase for cAMP production. Thus, membrane tubulin may play a role in mood disorders, which could be exploited for diagnosis and treatment.SIGNIFICANCE STATEMENT There is little understanding about the molecular mechanisms involved in the development of depression and, in severe cases, suicide. Evidence for the role of microtubule modifications in progression of depressive disorders is emerging. These postmortem data provide strong evidence for membrane tubulin modification leading to reduced efficacy of the G protein, Gαs, in depression. This study reveals a direct link between decreased tubulin acetylation in human depression and the increased localization of Gαs in lipid-raft domains responsible for attenuated cAMP signaling. The evidence presented here suggest a novel diagnostic and therapeutic locus for depression.


Assuntos
Citoesqueleto/metabolismo , Depressão/metabolismo , Desacetilase 6 de Histona/metabolismo , Córtex Pré-Frontal/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Adenilil Ciclases/metabolismo , Adolescente , Adulto , Idoso , Membrana Celular/metabolismo , AMP Cíclico/biossíntese , Feminino , Humanos , Masculino , Microdomínios da Membrana/metabolismo , Pessoa de Meia-Idade , Mudanças Depois da Morte , Suicídio , Adulto Jovem
8.
J Affect Disord ; 267: 103-106, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32063560

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) has an essential role in synaptic plasticity and neurogenesis. BDNF mediates amygdala-dependent learning for both aversive and appetitive emotional memories. The expression of BDNF in limbic regions is posited to contribute the development of depression, and amygdala responsivity is a potential marker of depressive state. METHODS: The present study examined the relationship between platelet BDNF levels and amygdala volume and function in major depressive disorder (MDD). Participants were 23 MDD (mean age 38.9 years) and 23 healthy controls (mean age 38.8 years). All participants were recruited from the community. MDD participants were in a current depressive episode of moderate severity and medication-free. Amygdala responses were acquired during a functional MRI task of implicit emotional processing with sad facial expressions. RESULTS: Significant correlation was observed between platelet BDNF levels and left amygdala responses, but no significant correlations were found with right amygdala responses or with amygdala volumes. LIMITATIONS: Interactions with neuroprotective as well as neurotoxic metabolites in the kyneurenine pathway were not examined. CONCLUSIONS: Relationship between BDNF levels and amygdala responsivity to emotionally salient stimuli in MDD could reflect the importance of BDNF in amygdala-dependent learning with clinical implications for potential pathways for treatment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Emoções , Expressão Facial , Humanos , Imageamento por Ressonância Magnética
9.
Adv Pharmacol ; 86: 21-45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31378253

RESUMO

Lipid microenvironments in the plasma membrane are known to influence many signal transduction pathways. Several of those pathways are critical for both the etiology and treatment of depression. Further, several signaling proteins are modified, covalently, by lipids, a process that alters their interface with the microenvironments mentioned above. This review presents a brief discussion of the interface of the above elements as well as a discussion about the participation of lipids and lipid moieties in the action of antidepressants.


Assuntos
Microdomínios da Membrana/metabolismo , Psiquiatria , Animais , Monoaminas Biogênicas/metabolismo , Depressão/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Humanos , Transdução de Sinais
10.
Dis Model Mech ; 12(5)2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31036560

RESUMO

Glycosphingolipid (GSL) accumulation is implicated in the neuropathology of several lysosomal conditions, such as Krabbe disease, and may also contribute to neuronal and glial dysfunction in adult-onset conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. GSLs accumulate in cellular membranes and disrupt their structure; however, how membrane disruption leads to cellular dysfunction remains unknown. Using authentic cellular and animal models for Krabbe disease, we provide a mechanism explaining the inactivation of lipid raft (LR)-associated IGF-1-PI3K-Akt-mTORC2, a pathway of crucial importance for neuronal function and survival. We show that psychosine, the GSL that accumulates in Krabbe disease, leads to a dose-dependent LR-mediated inhibition of this pathway by uncoupling IGF-1 receptor phosphorylation from downstream Akt activation. This occurs by interfering with the recruitment of PI3K and mTORC2 to LRs. Akt inhibition can be reversed by sustained IGF-1 stimulation, but only during a time window before psychosine accumulation reaches a threshold level. Our study shows a previously unknown connection between LR-dependent regulation of mTORC2 activity at the cell surface and a genetic neurodegenerative disease. Our results show that LR disruption by psychosine desensitizes cells to extracellular growth factors by inhibiting signal transmission from the plasma membrane to intracellular compartments. This mechanism serves also as a mechanistic model to understand how alterations of the membrane architecture by the progressive accumulation of lipids undermines cell function, with potential implications in other genetic sphingolipidoses and adult neurodegenerative conditions. This article has an associated First Person interview with the first author of the paper.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Microdomínios da Membrana/metabolismo , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingolipidoses/genética , Animais , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Lisossomos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Psicosina/farmacologia , Receptor IGF Tipo 1/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingolipidoses/metabolismo
11.
Neuropsychopharmacology ; 44(5): 1008, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617260

RESUMO

The originally published version of this article contained an error in Fig. 1e (imipramine), which was a duplicate of Fig. 1a control. The correct figure appears in the correction article. This error did not affect numeric results, as quantitation shown in the paper was carried out with three correct blots, including the one shown below.

12.
Mol Psychiatry ; 24(12): 1833-1843, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895894

RESUMO

Ketamine produces rapid and robust antidepressant effects in depressed patients within hours of administration, often when traditional antidepressant compounds have failed to alleviate symptoms. We hypothesized that ketamine would translocate Gαs from lipid rafts to non-raft microdomains, similarly to other antidepressants but with a distinct, abbreviated treatment duration. C6 glioma cells were treated with 10 µM ketamine for 15 min, which translocated Gαs from lipid raft domains to non-raft domains. Other NMDA antagonist did not translocate Gαs from lipid raft to non-raft domains. The ketamine-induced Gαs plasma membrane redistribution allows increased functional coupling of Gαs and adenylyl cyclase to increase intracellular cyclic adenosine monophosphate (cAMP). Moreover, increased intracellular cAMP increased phosphorylation of cAMP response element-binding protein (CREB), which, in turn, increased BDNF expression. The ketamine-induced increase in intracellular cAMP persisted after knocking out the NMDA receptor indicating an NMDA receptor-independent effect. Furthermore, 10 µM of the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) also induced Gαs redistribution and increased cAMP. These results reveal a novel antidepressant mechanism mediated by acute ketamine treatment that may contribute to ketamine's powerful antidepressant effect. They also suggest that the translocation of Gαs from lipid rafts is a reliable hallmark of antidepressant action that might be exploited for diagnosis or drug development.


Assuntos
Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/tratamento farmacológico , Glioma/metabolismo , Humanos , Microdomínios da Membrana/efeitos dos fármacos
14.
Front Pharmacol ; 9: 1289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483131

RESUMO

Progress toward new antidepressant therapies has been relatively slow over the past few decades, with the result that individuals suffering from depression often struggle to find an effective treatment - a process often requiring months. Furthermore, the neural factors that contribute to depression remain poorly understood, and there are many open questions regarding the mechanism of action of existing antidepressants. A better understanding of the molecular processes that underlie depression and contribute to antidepressant efficacy is therefore badly needed. In this review we highlight research investigating the role of G-proteins and the regulators of G-protein signaling (RGS) proteins, two protein families that are intimately involved in both the genesis of depressive states and the action of antidepressant drugs. Many antidepressants are known to indirectly affect the function of these proteins. Conversely, dysfunction of the G-protein and RGS systems can affect antidepressant efficacy. However, a great deal remains unknown about how these proteins interact with antidepressants. Findings pertinent to each individual G-protein and RGS protein are summarized from in vitro, in vivo, and clinical studies.

15.
Neuropsychopharmacology ; 43(7): 1481-1491, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463911

RESUMO

Current antidepressant therapies meet with variable therapeutic success and there is increasing interest in therapeutic approaches not based on monoamine signaling. Histone deacetylase 6 (HDAC6), which also deacetylates α-tubulin shows altered expression in mood disorders and HDAC6 knockout mice mimic traditional antidepressant treatments. Nonetheless, a mechanistic understanding for HDAC6 inhibitors in the treatment of depression remains elusive. Previously, we have shown that sustained treatment of rats or glioma cells with several antidepressants translocates Gαs from lipid rafts toward increased association with adenylyl cyclase (AC). Concomitant with this is a sustained increase in cAMP production. While Gαs modifies microtubule dynamics, tubulin also acts as an anchor for Gαs in lipid-rafts. Since HDAC-6 inhibitors potentiate α-tubulin acetylation, we hypothesize that acetylation of α-tubulin disrupts tubulin-Gαs raft-anchoring, rendering Gαs free to activate AC. To test this, C6 Glioma (C6) cells were treated with the HDAC-6 inhibitor, tubastatin-A. Chronic treatment with tubastatin-A not only increased α-tubulin acetylation but also translocated Gαs from lipid-rafts, without changing total Gαs. Reciprocally, depletion of α-tubulin acetyl-transferase-1 ablated this phenomenon. While escitalopram and imipramine also disrupt Gαs/tubulin complexes and translocate Gαs from rafts, they evoke no change in tubulin acetylation. Finally, two indicators of downstream cAMP signaling, cAMP response element binding protein phosphorylation (pCREB) and expression of brain-derived-neurotrophic-factor (BDNF) were both elevated by tubastatin-A. These findings suggest HDAC6 inhibitors show a cellular profile resembling traditional antidepressants, but have a distinct mode of action. They also reinforce the validity of antidepressant-induced Gαs translocation from lipid-rafts as a biosignature for antidepressant response that may be useful in the development of new antidepressant compounds.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Linhagem Celular Tumoral , Citalopram/farmacologia , AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ácidos Hidroxâmicos/farmacologia , Imipramina/farmacologia , Indóis/farmacologia , RNA Interferente Pequeno/farmacologia , Ratos
16.
J Integr Neurosci ; 16(s1): S115-S124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29254106

RESUMO

Depression is the leading cause of disability worldwide, and even though many forms of therapy exist, about one third of patients treated with conventional antidepressants do not experience a response. For these reasons, new approaches to treat depression, including fish oil, are being investigated. Fish oil is known to have many beneficial side effects, and clinical trials demonstrate that supplementation with fish oil is beneficial in the management of depression. Fish oil contains omega-3 polyunsaturated fatty acids (PUFA), and there are several mechanisms by which PUFAs are thought to induce an antidepressant effect, including anti-inflammatory action and direct effects on membrane properties. This review will analyze and evaluate the clinical trials surrounding fish oil use in the treatment of depression, and will also review the likely sites of action of PUFAs at the cell membrane with special attention being placed on lipid rafts and G-proteins.


Assuntos
Transtorno Depressivo/dietoterapia , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Animais , Transtorno Depressivo/metabolismo , Óleos de Peixe/química , Humanos
18.
PLoS One ; 12(5): e0176841, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472098

RESUMO

We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A). In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L) as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK). This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N) blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.


Assuntos
Adipogenia/fisiologia , Cromograninas/fisiologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Microtúbulos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3-L1 , Animais , Transferência Ressonante de Energia de Fluorescência , Camundongos
20.
J Biol Chem ; 291(38): 19725-19733, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27432886

RESUMO

Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics.


Assuntos
Antidepressivos/farmacologia , Cromograninas/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Microdomínios da Membrana/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Linhagem Celular Tumoral , Cromograninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Microdomínios da Membrana/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Sistemas do Segundo Mensageiro/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...