Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 368, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085799

RESUMO

BACKGROUND: Damaging alterations in the BRCA1 gene have been extensively described as one of the main causes of hereditary breast and ovarian cancer (HBOC). BRCA1 alterations can lead to impaired homologous recombination repair (HRR) of double-stranded DNA breaks, a process which involves the RING, BRCT and coiled-coil domains of the BRCA1 protein. In addition, the BRCA1 protein is involved in transcriptional activation (TA) of several genes through its C-terminal BRCT domain. METHODS: In this study, we have investigated the effect on HRR and TA of 11 rare BRCA1 missense variants classified as variants of uncertain clinical significance (VUS), located within or in close proximity to the BRCT domain, with the aim of generating additional knowledge to guide the correct classification of these variants. The variants were selected from our previous study "BRCA1 Norway", which is a collection of all BRCA1 variants detected at the four medical genetic departments in Norway. RESULTS: All variants, except one, showed a significantly reduced HRR activity compared to the wild type (WT) protein. Two of the variants (p.Ala1708Val and p.Trp1718Ser) also exhibited low TA activity similar to the pathogenic controls. The variant p.Trp1718Ser could be reclassified to likely pathogenic. However, for ten of the variants, the total strength of pathogenic evidence was not sufficient for reclassification according to the CanVIG-UK BRCA1/BRCA2 gene-specific guidelines for variant interpretation. CONCLUSIONS: When including the newly achieved functional evidence with other available information, one VUS was reclassified to likely pathogenic. Eight of the investigated variants affected only one of the assessed activities of BRCA1, highlighting the importance of comparing results obtained from several functional assays to better understand the consequences of BRCA1 variants on protein function. This is especially important for multifunctional proteins such as BRCA1.


Assuntos
Neoplasias da Mama , Genes BRCA1 , Reparo de DNA por Recombinação , Ativação Transcricional , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Predisposição Genética para Doença , Células Germinativas/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409061

RESUMO

Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses affect their expression. Therefore, we compared human cytokine and receptor transcript levels in virus positive (V+) and virus negative (V-) MCC cell lines. Increased expression of IL-33, a potent modulator of tumor microenvironment, was observed in V+ MCC cell lines when compared to V- MCC-13 cells. Transient transfection studies with luciferase reporter plasmids demonstrated that LT and sT stimulated IL-33, ST2/IL1RL1 and IL1RAcP promoter activity. The induction of IL-33 expression was confirmed by transfecting MCC-13 cells with MCPyV LT. Furthermore, recombinant human cytokine domain IL-33 induced activation of MAP kinase and NF-κB pathways, which could be blocked by a ST2 receptor antibody. Immunohistochemical analysis demonstrated a significantly stronger IL-33, ST2, and IL1RAcP expression in MCC tissues compared to normal skin. Of interest, significantly higher IL-33 and IL1RAcP protein levels were observed in MCC patient plasma compared to plasma from healthy controls. Previous studies have demonstrated the implication of the IL-33/STL2 pathway in cancer. Because our results revealed a T-antigens-dependent induction of the IL-33/ST2 axis, IL-33/ST2 may play a role in the tumorigenesis of MCPyV-positive MCC. Therefore, neutralizing the IL-33/ST2 axis may present a novel therapeutic approach for MCC patients.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Carcinogênese , Carcinoma de Célula de Merkel/patologia , Citocinas/metabolismo , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Poliomavírus das Células de Merkel/fisiologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral
3.
Virol J ; 18(1): 139, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217322

RESUMO

BACKGROUND: Approximately 15% of human cancers are attributed to viruses. Numerous studies have shown that high-risk human polyomaviruses (HR-HPV) and Merkel cell polyomavirus (MCPyV) are two human tumor viruses associated with anogenetal and oropharyngeal cancers, and with Merkel cell carcinoma, respectively. MCPyV has been found in HR-HPV positive anogenetal and oropharyngeal tumors, suggesting that MCPyV can act as a co-factor in HR-HPV induced oncogenesis. This prompted us to investigate whether the oncoproteins large T-antigen (LT) and small antigen (sT) of MCPyV could affect the transcriptional activity HPV16 and HPV18 and vice versa whether HPV16 and HPV18 E6 and E7 oncoproteins affected the expression of MCPyV LT and sT. Reciprocal stimulation of these viral oncoproteinscould enhance the oncogenic processes triggered by these tumor viruses. METHODS: Transient co-transfection studies using a luciferase reporter plasmid with the long control region of HPV16 or HPV18, or the early or late promoter of MCPyV and expression plasmids for LT and sT, or E6 and E7, respectively were performed in the HPV-negative cervical cancer cell line C33A, in the keratinocyte cell line HaCaT, and in the oral squamous cell carcinoma cell line HSC-3. Transfections were also performed with deletion mutants of all these promoters and with mutants of all four oncoproteins. Finally, the effect of E6 and E7 on LT and sT expression in the MCPyV-positive Merkel cell carcinoma cell line WaGa and the effect of LT and sT on the expression of E6 and E7 was monitored by Western blotting. RESULTS: LT and sT stimulated the transcriptional activity of the HPV16 and HPV18 LCR and v.v. E6 and E7 potentiated the MCPyV early and late promoter in all cell lines. Induction by E6 and E7 was p53- and pRb-independent, and transactivation by LT did not require DNA binding, nuclear localization and HSC70/pRb interaction, whereas sT stimulated the HPV16/18 LCR activity in a PP2A- and DnaJ-independent manner. CONCLUSIONS: These results indicate that the co-infection of MCPyV may act as a co-factor in the initiation and/or progression of HPV-induced cancers.


Assuntos
Carcinoma de Célula de Merkel , Carcinoma de Células Escamosas , Poliomavírus das Células de Merkel , Neoplasias Bucais , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Carcinoma de Célula de Merkel/virologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Células HaCaT , Papillomavirus Humano 16/genética , Papillomavirus Humano 18 , Humanos , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Neoplasias Bucais/virologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Ativação Transcricional
4.
Virol J ; 17(1): 54, 2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306957

RESUMO

BACKGROUND: Merkel cell polyomavirus (MCPyV) is a human polyomavirus that establishes a life-long harmless infection in most individuals, with dermal fibroblasts believed to be the natural host cell. However, this virus is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. Several MCPyV variants with polymorphism in their promoter region have been isolated, but it is not known whether these differences affect the biological properties of the virus. METHODS: Using transient transfection studies in human dermal fibroblasts and the MCC cell line MCC13, we compared the transcription activity of the early and late promoters of the most commonly described non-coding control region MCPyV variant and six other isolates containing specific mutation patterns. RESULTS: Both the early and late promoters were significantly stronger in human dermal fibroblasts compared with MCC13 cells, and a different promoter strength between the MCPyV variants was observed. The expression of full-length large T-antigen, a viral protein that regulates early and late promoter activity, inhibited early and late promoter activities in both cell lines. Nonetheless, a truncated large T-antigen, which is expressed in virus-positive MCCs, stimulated the activity of its cognate promoter. CONCLUSION: The promoter activities of all MCPyV variants tested was stronger in human dermal fibroblasts, a cell line that supports viral replication, than in MCC13 cells, which are not permissive for MCPyV. Truncated large T-antigen, but not full-length large T-antigen stimulated viral promoter activity. Whether, the difference in promoter strength and regulation by large T-antigen may affect the replication and tumorigenic properties of the virus remains to be determined.


Assuntos
Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/virologia , Fibroblastos/virologia , Poliomavírus das Células de Merkel/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Variação Genética , Humanos , Transcrição Gênica , Transfecção , Replicação Viral
5.
APMIS ; 128(2): 104-120, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31990105

RESUMO

Merkel cell polyomavirus (MCPyV) is the major causative factor of the rare but aggressive cancer, Merkel cell carcinoma (MCC). Two characteristics of MCPyV-positive MCCs are integration of the viral genome and expression of a truncated version of one of its oncogenic proteins, namely large T antigen. The strong association of MCPyV with MCC development has incited researchers to further investigate a possible role of this virus in other cancers. However, many of the examples displaying the presence of the virus in the various non-MCC cancers are not able to clearly demonstrate a direct connection between cellular transformation and the presence of the virus. The prevalence of the virus is significantly lower in non-MCC cancers compared to MCCs, with a lower level of viral load and sparse viral protein expression. Moreover, the state of the viral genome, and whether a truncated large T antigen is expressed, has rarely been investigated. Nonetheless, considering the strong oncogenic potential of MCPyV proteins in MCC, the plausible contribution of MCPyV to transformation and cancer growth in non-MCC tumors cannot be ruled out. Furthermore, the absence of MCPyV in cancers does not exclude a hit-and-run mechanism, or the oncoproteins of MCPyV may potentiate the neoplastic process mediated by co-infecting oncoviruses such as high-risk human papillomaviruses and Epstein-Barr virus. The current review is focusing on the available data describing the presence of MCPyV in non-MCC tumors, with an aim to provide a comprehensive overview of the corresponding literature and to discuss the potential contribution of MCPyV to non-MCC cancer in light of this.


Assuntos
Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/virologia , Poliomavírus das Células de Merkel/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Animais , Carcinogênese/genética , Humanos , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia , Carga Viral/genética
6.
J Invest Dermatol ; 140(1): 56-65.e3, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283928

RESUMO

Despite the fact that the transcription factor ATOH1 is a master regulator of Merkel cell development, its role in Merkel cell carcinoma (MCC) carcinogenesis remains controversial. Here, we provide several lines of evidence that ATOH1 is a lineage-dependent oncogene in MCC. Luciferase assays revealed binding of ATOH1 and subsequent activation to the promoter of miR-375, which is one of the most abundant microRNAs in MCCs. Overexpression of ATOH1 in variant MCC cell lines and fibroblasts induced miR-375 expression, whereas ATOH1 knockdown in classical MCC cell lines reduced miR-375 expression. Moreover, ATOH1 overexpression in these cells changed their growth characteristics from adherent to suspension and/orspheroidal growth, that is, resembling the neuroendocrine growth pattern of classical MCC cell lines. Notably, ectopic expression of different Merkel cell polyomavirus (MCPyV)-derived truncated large T antigens induced ATOH1 expression in fibroblasts, which was paralleled by miR-375 expression and similar morphologic changes. In summary, MCPyV-associated carcinogenesis is likely to induce the characteristic neuroendocrine features of MCC via induction of ATOH1; thus, ATOH1 can be regarded as a lineage-dependent oncogene in MCC.


Assuntos
Antígenos Virais de Tumores/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Célula de Merkel/genética , Poliomavírus das Células de Merkel/fisiologia , MicroRNAs/genética , Oncogenes/genética , Neoplasias Cutâneas/genética , Antígenos Virais de Tumores/metabolismo , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Regulação Neoplásica da Expressão Gênica , Humanos , Infecções por Polyomavirus , Infecções Tumorais por Vírus
7.
Oncotarget ; 9(59): 31432-31447, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30140381

RESUMO

Merkel cell carcinoma (MCC) is a rare, highly aggressive neuroendocrine skin cancer. In more than 80% of the cases, Merkel cell polyomavirus (MCPyV) is a causal factor. The oncogenic potential of MCPyV is mediated through its viral oncoproteins, large T antigen (LT) and small t antigen (sT). To investigate the role of cytokines in MCC, a PCR array analysis for genes encoding inflammatory cytokines and receptors was performed on MCPyV-negative and MCPyV-positive MCC cell lines, respectively. We detected an increased expression of CCL17/TARC in the MCPyV-positive MKL2 cell line compared to the MCPyV-negative MCC13 cell line. Transfection studies in MCC13 cells with LT expression plasmid, and a luciferase reporter plasmid containing the CCL17/TARC promoter, exhibited stimulated promoter activity. Interestingly, the ectopic expression of CCL17/TARC upregulated MCPyV early and late promoter activities in MCC13 cells. Furthermore, recombinant CCL17/TARC activated both the mitogen-activated protein kinase and the NF-κB pathways. Finally, immunohistochemical staining on human MCC tissues showed a strong staining of CCL17/TARC and its receptor CCR4 in both LT-positive and -negative MCC. Taken together, CCL17/TARC and CCR4 may be a potential target in MCC therapy providing MCC patients with a better overall survival outcome.

8.
Viruses ; 7(4): 1871-901, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25866902

RESUMO

Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, including humans. All polyomaviruses encode the large T-antigen and small t-antigen proteins that share conserved functional domains, comprising binding motifs for the tumor suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present, 13 different human polyomaviruses are known, and for some of them their large T-antigen and small t-antigen have been shown to possess oncogenic properties in cell culture and animal models, while similar functions are assumed for the large T- and small t-antigen of other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the only human polyomavirus associated with cancer. The large T- and small t-antigen exert their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating metastasis. This review elaborates on the putative roles of human polyomaviruses in some of the emerging hallmarks of cancer. The reciprocal interactions between human polyomaviruses and the immune system response are discussed, a plausible role of polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic strategies against these emerging hallmarks of cancer are also suggested.


Assuntos
Antígenos Virais de Tumores/metabolismo , Biomarcadores Tumorais , Neoplasias/patologia , Neoplasias/virologia , Proteínas Oncogênicas/metabolismo , Polyomavirus/crescimento & desenvolvimento , Humanos , Polyomavirus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...