Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 916845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968099

RESUMO

Cultivated sunflower holds a very narrow genetic base and the efficient utilization of available genetic diversity is very important for a successful breeding program. In the present study, 109 sunflower genotypes were assessed for diversity paneling through a combined approach of morphological and molecular markers analysis. Morphological parameters including days to flower initiation, days to flower completion, plant height, stem curvature, number of leaves per plant, leaf area, head diameter, hundred seed weight, and seed yield per plant were studied. Simple sequence repeats (40 DNA markers) were deployed for diversity profiling. Data were analyzed by both univariate and multivariate statistics. SD and coefficient of variation confirm the presence of significant amounts of genetic variation for all the morphological parameters. Cluster Analysis and Principal Component Analysis further confirm the presence of distinct grouping patterns in the studied material. Cluster analysis of both morphological and molecular analysis revealed that restorer lines tend to group separately from A, B, and open-pollinated lines. Further grouping, at the sub-cluster level, revealed six distinct sub-clusters in each of the two major clusters. In total, 12 genotypes, 6 CMS lines (CMS-HAP-12, CMS-HAP-54, CMS-HAP-56, CMS-HAP-99, CMS-HAP-111, and CMS-HAP-112) and 6 restorer lines (RHP-38, RHP-41, RHP-53, RHP-68, RHP-69, and RHP-71) could be used as potential parents for hybrid development. As genotypes of similar genetic backgrounds tend to group closer, it is deduced that one genotype with the highest seed yield per plant could be used for further hybrid breeding programs in sunflowers.

2.
Front Plant Sci ; 13: 951565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958190

RESUMO

Rice is a staple food for more than 50% of the global population and it is one of the most valuable cereal crops. To fulfill the dietary requirement of the ever-growing world population, an increase in per-unit production of rice is direly required. In Pakistan, it stands as the 2nd in consumption after wheat, which is a staple food. A huge gap is observed between yield potential and actual yield of the aromatic rice cultivars at a farmer-field level. The significant limitations responsible for this gap are shortage of irrigation water, inappropriate application of fertilizers, less plant population, deficiency of micronutrients, and improper and poor plant protection measures. A field study was planned to assess the yield response and quality attributes of aromatic rice to three levels of zinc (Zn) and nitrogen (N) under three irrigation regimes (8-, 12-, and 16-acre inches) in the Sheikhupura and Sargodha districts of Pakistan. Irrigation treatments significantly influenced the growth, yield, and quality attributes; however, maximum improvement was observed by the application of irrigation at 12-acre inches. Among the Zn treatments, application of Zn at 10 kg ha-1 was observed to be more responsive to improving the growth and quality parameters of aromatic rice crops. In the case of N treatments, application of N at 140 kg ha-1 produced the maximum total tillers, as well as productive tillers per hill, spikelets per panicle, leaf area index, leaf area duration, crop growth rate, total dry matter, harvest index, kernel length, kernel width, and 1,000-kernel weight. Application of N at 140 kg ha-1 not only improved the growth attributes but also increased the net assimilation rate, photosynthetically active radiation, and radiation use efficiency, with respect to total dry matter and kernel yield. The maximum percentage of normal kernels and minimum percentage of opaque, abortive, and chalky kernels were also recorded by application of N at 140 kg ha-1. The outcomes of current experiments depicted that application of irrigational water, zinc, and nitrogen at 12-acre inches, 10, and 140 kg ha-1, respectively, are responsible to achieve maximum resource utilization efficiency, along with increased yield and quality of rice.

3.
Plant Physiol Biochem ; 182: 1-10, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447411

RESUMO

Modern agriculture is primarily concerned with enhanced productivity of field crops linked with maximum resources use efficiency to feed the increasing population of the world. Exogenous application of biostimulants is considered a sustainable and ecofriendly approach to improve the growth and productivity of agronomic and horticultural field crops. The present study was carried out to explore the comparative growth enhancing potential of plant biostimulants (moringa leaf extract at 3% and sorghum water extract at 3%) and synthetic growth promoters (ascorbic acid at 500 µM and hydrogen peroxide at 100 µM) on growth, productivity and quality of quinoa crop (cultivar UAF-Q7) because it has gained significant popularity among agricultural scientists and farmers throughout the world due to its high nutritional profile. A field experiment was carried out at the Research Area of Directorate of Farms, University of Agriculture, Faisalabad, Pakistan during quinoa cultivation season of 2016-2017 and repeated during next year (2017-2018). All the foliar treatments enhanced the physiological, biochemical, quality, growth and yield attributes of quinoa as compared to control group. However, maximum improvement was observed in chlorophyll a and b contents, photosynthesis and respiration rates, and water use efficiency by moringa leaf extract (MLE) application. MLE application was also found more responsive regarding the improvement in activities of peroxidase, catalase, superoxide dismutase, phenolics and glycine betaine as compared to other treatments. Mineral elements i.e. K, Ca and N in root as well as in shoot were found the highest in response to MLE application. Similarly, growth (plant fresh and dry biomass, plant length and grain yield) and grain quality parameters (protein, K and Ca) were also significantly enhanced. Application of MLE was found to be a viable approach to improve the growth and quality of produce as compared to synthetic compounds.


Assuntos
Chenopodium quinoa , Moringa , Antioxidantes , Clorofila A , Moringa/química , Fotossíntese , Extratos Vegetais , Água
4.
PLoS One ; 17(2): e0263323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143535

RESUMO

Chickpea (Cicer arietinum L.) is of prime importance because of vital source of protein as major food legume. Globally, it is cultivated on large area to meet dietary requirements of humans. Climatic extremes (erratic rainfall, extreme high and low temperature) are key restrains for its production. Optimum sowing time is considered as an important factor to address climatic variations and to attain maximum yield. Foliar application of potassium (K) has also been reported to increase resistance against abiotic stresses. Similarly, exogenous application of plant based growth substances (bio-stimulants) like moringa leaf extract (MLE) are extensively used to enhance productivity of field crops. Therefore, current study was planned to evaluate the impact of foliar applied K and MLE on growth, physiology and productivity of kabuli chickpea grown under varying sowing dates. There were two sowing dates (normal sown; November 15 and late sown; December 15, 2020). Experiment was comprised of treatments i.e. control, water spray, foliar application of K at 1%, foliar application of MLE at 3% and combined application of K and MLE. Foliar applied K and MLE significantly improved physiological, biochemical and yield attributes of kabuli chickpea cultivated under normal and late sown conditions. Increase in growth and yield attributes like plant height, number of nodules per plant, nodules dry weight, branches and pods per plant, 100- grain weight, biological and grain yield were recorded in case of combined foliar application of K and MLE in normal and late sown chickpea. Maximum improvement in gas exchange attributes (stomatal conductance and transpiration rate), chlorophyll contents, antioxidants (catalase, superoxide dismutase and ascorbate peroxidase) and osmolytes (proline) were recorded with combined application of K and MLE in both sowing dates. Thus, combined applied K and MLE can be used to enhance productivity of kabuli chickpea.


Assuntos
Moringa
5.
PLoS One ; 17(2): e0263978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192653

RESUMO

Salinity in soil and water is one of the environmental factors that severely hinder the crop growth and production particularly in arid and semi-arid regions. A pot experiment was conducted to investigate the impact of salinity levels (1.5 dS m-1, 3.5 dS m-1, 7.5 dS m-1 and 11.5 dS m-1) on emergence, growth and biochemical traits of moringa landraces under completely randomized design having three replications. Four landraces of Moringa oleifera (Faisalabad black seeded moringa [MFB], Patoki black seeded moringa [MPB], Faisalabad white seeded moringa [MFW] and Rahim Yar Khan black seeded moringa [MRB]) were selected for experimentation. All the salinity levels significantly affected the emergence parameters (time to emergence start, time to 50% emergence, mean emergence time, emergence index and final emergence percentage) of moringa landraces. However, 1.5 dS m-1 and 3.5 dS m-1 were found more favorable. Higher salinity levels (7.5 dS m-1 and 11.5 dS m-1) significantly minimized the root surface area, root projected area, root volume and root density as compared to 1.5 dS m-1, 3.5 dS m-1. Number of branches, leaves, leaflets and leaf length were also adversely affected by 7.5 dS m-1 and 11.5 dS m-1. Maximum seedling fresh and dry weights, and seedling length were recorded at 1.5 dS m-1 followed by 3.5 dS m-1. Chlorophyll a and b contents, carotenoids and membrane stability index were also observed highest at salinity level of 1.5 dS m-1. In case of moringa landraces, MRB performed better regarding emergence attributes, growth parameters, and biochemical analysis followed by MFW as compared to MFB and MPB. Moringa landraces i.e. MRB and MFW were found more tolerant to salinity stress as compared to MFB and MPB.


Assuntos
Moringa oleifera/metabolismo , Tolerância ao Sal , Carotenoides/metabolismo , Clorofila/metabolismo , Moringa oleifera/crescimento & desenvolvimento , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/metabolismo , Solo/química
6.
Plants (Basel) ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161240

RESUMO

Population growth, food shortages, climate change and water scarcity are some of the frightening challenges being confronted in today's world. Water deficit or drought stress has been considered a severe limitation for the productivity of rice, a widely popular nutritive cereal crop and the staple food of a large portion of the population. A key stage in crop growth is seed emergence, which is mostly constrained by abiotic elements such as high temperatures, soil crusting and low water potential, which are responsible for poor stand establishment. Seed priming is a pre-sowing treatment of seeds that primes them to a physiological state that allows them to emerge more proficiently. The purpose of this study was to investigate the potential of leaf extracts from local and exotic moringa landraces as seed priming agents in rice cultivated under water deficit (75% field capacity) and control conditions (100% field capacity). Rice seeds were placed in an aerated solution of moringa leaf extract (MLE) at 3% from three obtained landraces (Faisalabad, Multan and an exotic landrace of India). The results obtained from the experimentation show that the water deficit regime adversely affected the studied indicators including emergence and growth attributes as well as physiological parameters. Among the priming agents, MLE from the Faisalabad landrace significantly improved the speed and spread of emergence of rice seedlings (time to start emergence at 23%, emergence index at 75%, mean emergence time at 3.58% and final emergence percentage at 46%). All the priming agents enhanced the growth, photosynthetic pigments, gas exchange parameters and antioxidant activities, particularly under the water deficit regime, but the maximum improvement was recorded by the MLE from the Faisalabad landrace. Therefore, the MLE of the Faisalabad landrace can be productively used to boost the seedling establishment and growth of rice grown under normal and water deficit conditions.

7.
Front Nutr ; 8: 779595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966772

RESUMO

Field-based experiments were conducted during wheat cultivation seasons of 2017-2018 and 2018-2019 to minimize the impact of hidden hunger (micronutrient deficiencies) through agronomic biofortification of two wheat cultivars with zinc and iron. Two spring-planted bread wheat cultivars: Zincol-16 (Zn-efficient) and Anaj-17 (Zn-inefficient with high-yield potential) were treated with either zinc (10 kg/ha), iron (12 kg/ha), or their combination to study their effect on some growth attributes (plant height, tillers, and spike length, etc.,), productivity, and quality. No application of zinc and iron or their combinations served as the control. Maximum Zn and Fe contents of grains were improved by sole application of Zn and Fe, respectively. A higher concentration of Ca in grains was observed by the combined application of Zn and Fe. Starch contents were found maximum by sole application of Fe. Sole or combined application of Zn and Fe reduced wet gluten contents. Maximum proteins were recorded in Anaj-17 under control treatments. Zincol-16 produced maximum ionic concentration, starch contents, and wet gluten as compared to Anaj-17. Yield and growth attributes were also significantly (p < 0.05) improved by combined application as compared to the sole application of Zn or Fe. The combined application also produced the highest biological and grain yield with a maximum harvest index. Cultivar Anaj-17 was found more responsive regarding growth and yield attributes comparatively. The findings of the present study showed that the combined application of Zn and Fe produced good quality grains (more Zn, Fe, Ca, starch, and less gluten concentrations) with a maximum productivity of bread wheat cultivars.

8.
PLoS One ; 16(11): e0259214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34748570

RESUMO

Quinoa (Chenopodium quinoa Willd.) has gained significant popularity among agricultural scientists and farmers throughout the world due to its high nutritive value. It is cultivated under a range of soil and climatic conditions; however, late sowing adversely affects its productivity and yield due to shorter growth period. Inorganic and organic phyto-stimulants are promising for improving growth, development, and yield of field crops under stressful environments. Field experiments were conducted during crop cultivation seasons of 2016-17 and 2017-18, to explore the role of inorganic (hydrogen peroxide and ascorbic acid) and organic [moringa leaf extract (MLE) and sorghum water extract (sorgaab)] phyto-stimulants in improving growth and productivity of quinoa (cultivar UAF-Q7). Hydrogen peroxide at 100 µM, ascorbic acid at 500 µM, MLE at 3% and sorgaab at 3% were exogenously applied at anthesis stage of quinoa cultivated under normal (November 21st and 19th during 2016 and 2017) and late-sown (December 26th and 25th during 2016 and 2017) conditions. Application of inorganic and organic phyto-stimulants significantly improved biochemical, physiological, growth and yield attributes of quinoa under late sown conditions. The highest improvement in these traits was recorded for MLE. Application of MLE resulted in higher chlorophyll a and b contents, stomatal conductance, and sub-stomatal concentration of CO2 under normal and late-sowing. The highest improvement in soluble phenolics, anthocyanins, free amino acids and proline, and mineral elements in roots, shoot and grains were observed for MLE application. Growth attributes, including plant height, plant fresh weight and panicle length were significantly improved with MLE application as compared to the rest of the treatments. The highest 1000-grain weight and grain yield per plant were noted for MLE application under normal and late-sowing. These findings depict that MLE has extensive crop growth promoting potential through improving physiological and biochemical activities. Hence, MLE can be applied to improve growth and productivity of quinoa under normal and late-sown conditions.


Assuntos
Antocianinas/farmacologia , Chenopodium quinoa/crescimento & desenvolvimento , Clorofila A/metabolismo , Moringa/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...