Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 19(5): 2856-2861, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30501791

RESUMO

Corn-cobs are an agro-industrial waste and composed of cellulose mostly. In this study cellulose was isolated from the waste corn-cobs and modified to polymeric hydroxamic acid palladium complex 1 and characterized by using a variety of spectroscopic methods such as field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The complex 1 exhibited high catalytic activity towards Suzuki and Heck coupling reactions of activated and deactivated aryl halides to give the respective coupling products with high yield. Moreover, the complex 1 was recovered and recycled five times with no considerable loss of catalytic overall performance.

2.
J Nanosci Nanotechnol ; 17(1): 550-57, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29630141

RESUMO

Biomaterials as a support for catalysts are of prime importance. Tapioca root which is an abundant biopolymer source was used to synthesize cellulose supported bio-heterogeneous poly(hydroxamic acid) copper nanoparticles (CuN@PHA) and was characterized by Fourier transform infrared spectroscopy (FTIR), ultraviolet­visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), transmission electron microscopy (TEM) analyses. The tapioca cellulose supported CuN@PHA (50 mol ppm) effectively catalyzed N-alkylation reaction of aliphatic amines with α,ß-unsaturated compounds to give the corresponding alkylated products. High yields up to 95% were achieved for the converted products. The reusability of the cellulose supported nanoparticles was found to be excellent with no significant reduction of its catalytic activity over several cycles. The catalyst showed high catalytic activity having turnover number (TON) 18000 and turnover frequency (TOF) 2250 h⁻¹.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA