Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(39): e2403062121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39302966

RESUMO

The progression of many solid tumors is accompanied by temporal and spatial changes in the stiffness of the extracellular matrix (ECM). Cancer cells adapt to soft and stiff ECM through mechanisms that are not fully understood. It is well known that there is significant genetic heterogeneity from cell to cell in tumors, but how ECM stiffness as a parameter might interact with that genetic variation is not known. Here, we employed experimental evolution to study the response of genetically variable and clonal populations of tumor cells to variable ECM stiffness. Proliferation rates of genetically variable populations cultured on soft ECM increased over a period of several weeks, whereas clonal populations did not evolve. Tracking of DNA barcoded cell lineages revealed that soft ECM consistently selected for the same few variants. These data provide evidence that ECM stiffness exerts natural selection on genetically variable tumor populations. Soft-selected cells were highly migratory, with enriched oncogenic signatures and unusual behaviors such as spreading and traction force generation on ECMs with stiffness as low as 1 kPa. Rho-regulated cell spreading was found to be the directly selected trait, with yes-associated protein 1 translocation to the nucleus mediating fitness on soft ECM. Overall, these data show that genetic variation can drive cancer cell adaptation to ECM stiffness.


Assuntos
Matriz Extracelular , Variação Genética , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Humanos , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Adaptação Fisiológica/genética , Proliferação de Células/genética , Movimento Celular/genética
2.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587225

RESUMO

We present a detailed assessment of deep neural network potentials developed within the Deep Potential Molecular Dynamics (DeePMD) framework and trained on the MB-pol data-driven many-body potential energy function. Specific focus is directed at the ability of DeePMD-based potentials to correctly reproduce the accuracy of MB-pol across various water systems. Analyses of bulk and interfacial properties as well as many-body interactions characteristic of water elucidate inherent limitations in the transferability and predictive accuracy of DeePMD-based potentials. These limitations can be traced back to an incomplete implementation of the "nearsightedness of electronic matter" principle, which may be common throughout machine learning potentials that do not include a proper representation of self-consistently determined long-range electric fields. These findings provide further support for the "short-blanket dilemma" faced by DeePMD-based potentials, highlighting the challenges in achieving a balance between computational efficiency and a rigorous, physics-based representation of the properties of water. Finally, we believe that our study contributes to the ongoing discourse on the development and application of machine learning models in simulating water systems, offering insights that could guide future improvements in the field.

3.
Curr Res Struct Biol ; 7: 100113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292821

RESUMO

THAP9 is a transposable element-derived gene that encodes the THAP9 protein, which is homologous to the Drosophila P-element transposase (DmTNP) and can cut and paste DNA. However, the exact functional role of THAP9 is unknown. Here, we perform structure prediction, evolutionary analysis and extensive in silico characterization of THAP9, including predicting domains and putative post-translational modification sites. Comparison of the AlphaFold-predicted structure of THAP9 with the DmTNP CryoEM structure, provided insights about the C2CH motif and other DNA binding residues, RNase H-like catalytic domain and insertion domain of the THAP9 protein. We also predicted previously unreported mammalian-specific post-translational modification sites that may play a role in the subcellular localization of THAP9. Furthermore, we observed that there are distinct organism class-specific conservation patterns of key functional residues in certain THAP9 domains.

4.
Chemphyschem ; 24(2): e202200640, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36205532

RESUMO

Our recent work on the E-Z isomerization reaction of guanidine using ab initio chemical dynamics simulations [Rashmi et al., Regul. Chaotic Dyn. 2021, 26, 119] emphasized the role of second-order saddle (SOS) in the isomerization reaction; however, we could not unequivocally establish the non-statistical nature of the dynamics followed in the reaction. In the present study, we performed thousands of on-the-fly trajectories using forces computed at the MNDO level to investigate the influence of second-order saddle in the E-Z isomerization reaction of guanidine and the role of intramolecular vibrational energy redistribution (IVR) on the reaction dynamics. The simulations reveal that while majority of the trajectories follow the traditional transition state pathways, 15 % of the trajectories follow the SOS path. The dynamics was found to be highly non-statistical with the survival probabilities of the reactants showing large deviations from those obtained within the RRKM assumptions. In addition, a detailed analysis of the dynamics using time-dependent frequencies and the frequency ratio spaces reveal the existence of multiple resonance junctions that indicate the existence of regular dynamics and long-lived quasi-periodic trajectories in the phase space associated with non-RRKM behavior.


Assuntos
Vibração , Guanidina , Isomerismo , Físico-Química
5.
Noncoding RNA ; 8(4)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35893234

RESUMO

Human THAP9, which encodes a domesticated transposase of unknown function, and lncRNA THAP9-AS1 (THAP9-antisense1) are arranged head-to-head on opposite DNA strands, forming a sense and antisense gene pair. We predict that there is a bidirectional promoter that potentially regulates the expression of THAP9 and THAP9-AS1. Although both THAP9 and THAP9-AS1 are reported to be involved in various cancers, their correlative roles on each other's expression has not been explored. We analyzed the expression levels, prognosis, and predicted biological functions of the two genes across different cancer datasets (TCGA, GTEx). We observed that although the expression levels of the two genes, THAP9 and THAP9-AS1, varied in different tumors, the expression of the gene pair was strongly correlated with patient prognosis; higher expression of the gene pair was usually linked to poor overall and disease-free survival. Thus, THAP9 and THAP9-AS1 may serve as potential clinical biomarkers of tumor prognosis. Further, we performed a gene co-expression analysis (using WGCNA) followed by a differential gene correlation analysis (DGCA) across 22 cancers to identify genes that share the expression pattern of THAP9 and THAP9-AS1. Interestingly, in both normal and cancer samples, THAP9 and THAP9-AS1 often co-express; moreover, their expression is positively correlated in each cancer type, suggesting the coordinated regulation of this H2H gene pair.

6.
J Photochem Photobiol B ; 189: 14-20, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30268951

RESUMO

We have developed endogenous redox-responsive polymer conjugated GO-based hybrid nanomaterials (GO-PEGssFol-CPT) for delivery of anticancer drug camptothecin (CPT) to the cancer cells. The synthesized intermediate (PEGSSFol) and CPT loaded GO- PEGSSFol were characterized using Fourier transform infrared spectroscopy (FTIR) and 1H NMR. The morphological feature changes of TEM and AFM images have confirmed the loading of CPT on the nanocarrier and its release from the nanocarrier. The amount of CPT was loaded was found to be 14.2%. The extent of camptothecin (CPT) release from GO-BiotinPVA-CPT in the presence of different concentrations of glutathione (GSH) was monitored with the increase in the fluorescence intensity at λmax 438 nm and UV-Vis absorbance at 366 nm. The time-dependent camptothecin (CPT) release was monitored in the presence of GSH. It was noticed that CPT was completely released from GO-PEGssFol-CPT within 45 min. This release process is free from interference by other ubiquitous analytes in the living system. The constant fluorescence intensity of GO-PEGssFol-CPT against acidic pH indicated that CPT would not be released in the extracellular region of cancer cells. Therefore, such delivery system could be used to prevent unwanted cytotoxicity to the healthy cells. The GO-PEGssFol-CPT showed higher antiproliferative activity against cervical cancer cells compared to the CPT. Thus, GO-PEGssFol-CPT can be a new material to deliver the anticancer drug to the target tumor region.


Assuntos
Camptotecina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Monitoramento de Medicamentos , Camptotecina/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Feminino , Glutationa/farmacologia , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Oxirredução , Polímeros/metabolismo , Polímeros/uso terapêutico , Inibidores da Topoisomerase I/administração & dosagem , Neoplasias do Colo do Útero/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA