Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
2.
Blood Adv ; 7(20): 6092-6107, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37406166

RESUMO

Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.


Assuntos
Neoplasias Hematológicas , Leucemia , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Neoplasias Hematológicas/genética , Mutação em Linhagem Germinativa , RNA Helicases DEAD-box/genética , Carcinogênese , Células Germinativas , Fator de Transcrição GATA2/genética
3.
Haematologica ; 108(8): 2130-2145, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794499

RESUMO

Sustained ANKRD26 expression associated with germline ANKRD26 mutations causes thrombocytopenia 2 (THC2), an inherited platelet disorder associated with a predisposition to leukemia. Some patients also present with erythrocytosis and/or leukocytosis. Using multiple human-relevant in vitro models (cell lines, primary patients' cells and patient-derived induced pluripotent stem cells) we demonstrate for the first time that ANKRD26 is expressed during the early steps of erythroid, megakaryocyte and granulocyte differentiation, and is necessary for progenitor cell proliferation. As differentiation progresses, ANKRD26 expression is progressively silenced, to complete the cellular maturation of the three myeloid lineages. In primary cells, abnormal ANKRD26 expression in committed progenitors directly affects the proliferation/differentiation balance for the three cell types. We show that ANKRD26 interacts with and crucially modulates the activity of MPL, EPOR and G-CSFR, three homodimeric type I cytokine receptors that regulate blood cell production. Higher than normal levels of ANKRD26 prevent the receptor internalization that leads to increased signaling and cytokine hypersensitivity. These findings afford evidence how ANKRD26 overexpression or the absence of its silencing during differentiation is responsible for myeloid blood cell abnormalities in patients with THC2.


Assuntos
Leucemia , Receptores de Citocinas , Humanos , Citocinas , Hematopoese , Leucemia/patologia , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular
4.
J Thromb Haemost ; 20(11): 2666-2678, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36006037

RESUMO

BACKGROUND: Filaminopathies A are rare disorders affecting the brain, intestine, or skeleton, characterized by dominant X-linked filamin A (FLNA) gene mutations. Macrothrombocytopenia with functionally defective platelets is frequent. We have described a filaminopathy A male patient, exhibiting a C-terminal frame-shift FLNa mutation (Berrou et al., Arterioscler Thromb Vasc Biol. 2017;37:1087-1097). Contrasting with female patients, this male patient exhibited gain of platelet functions, including increased platelet aggregation, integrin αIIbß3 activation, and secretion at low agonist concentration, raising the issue of thrombosis risk. OBJECTIVES: Our goal is to assess the thrombotic potential of the patient FLNa mutation in an in vivo model. METHODS: We have established a mutant FlnA knock-in mouse model. RESULTS: The mutant FlnA mouse platelets phenocopied patient platelets, showing normal platelet count, lower expression level of mutant FlnA, and gain of platelet functions: increased platelet aggregation, secretion, and αIIbß3 activation, as well as increased spreading and clot retraction. Surprisingly, mutant FlnA mice exhibited a normal bleeding time, but with increased re-bleeding (77%) compared to wild type (WT) FlnA mice (27%), reflecting hemostatic plug instability. Again, in an in vivo thrombosis model, the occlusion time was not altered by the FlnA mutation, but arteriolar embolies were increased (7-fold more frequent in mutant FlnA mice versus WT mice), confirming thrombus instability. CONCLUSIONS: This study shows that the FlnA mutation found in the male patient induced gain of platelet functions in vitro, but thrombus instability in vivo. Implications for the role of FLNa in physiology of thrombus formation are discussed.


Assuntos
Hemostáticos , Trombose , Masculino , Feminino , Camundongos , Animais , Filaminas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Mutação com Ganho de Função , Trombose/genética , Trombose/metabolismo , Mutação
5.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35587378

RESUMO

Acute megakaryoblastic leukemia of Down syndrome (DS-AMKL) is a model of clonal evolution from a preleukemic transient myeloproliferative disorder requiring both a trisomy 21 (T21) and a GATA1s mutation to a leukemia driven by additional driver mutations. We modeled the megakaryocyte differentiation defect through stepwise gene editing of GATA1s, SMC3+/-, and MPLW515K, providing 20 different T21 or disomy 21 (D21) induced pluripotent stem cell (iPSC) clones. GATA1s profoundly reshaped iPSC-derived hematopoietic architecture with gradual myeloid-to-megakaryocyte shift and megakaryocyte differentiation alteration upon addition of SMC3 and MPL mutations. Transcriptional, chromatin accessibility, and GATA1-binding data showed alteration of essential megakaryocyte differentiation genes, including NFE2 downregulation that was associated with loss of GATA1s binding and functionally involved in megakaryocyte differentiation blockage. T21 enhanced the proliferative phenotype, reproducing the cellular and molecular abnormalities of DS-AMKL. Our study provides an array of human cell-based models revealing individual contributions of different mutations to DS-AMKL differentiation blockage, a major determinant of leukemic progression.


Assuntos
Síndrome de Down , Leucemia Megacarioblástica Aguda , Proteínas de Ciclo Celular/genética , Criança , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Down/genética , Fator de Transcrição GATA1/genética , Hematopoese , Humanos , Leucemia Megacarioblástica Aguda/complicações , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/metabolismo , Megacariócitos/metabolismo , Mutação , Trissomia
6.
Br J Haematol ; 198(1): 131-136, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35355248

RESUMO

Myeloproliferative neoplasms (MPN) are mainly sporadic but inherited variants have been associated with higher risk development. Here, we identified an EPOR variant (EPORP488S ) in a large family diagnosed with JAK2V617F -positive polycythaemia vera (PV) or essential thrombocytosis (ET). We investigated its functional impact on JAK2V617F clonal amplification in patients and found that the variant allele fraction (VAF) was low in PV progenitors but increase strongly in mature cells. Moreover, we observed that EPORP488S alone induced a constitutive phosphorylation of STAT5 in cell lines or primary cells. Overall, this study points for searching inherited-risk alleles affecting the JAK2/STAT pathway in MPN.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Receptores da Eritropoetina , Trombocitemia Essencial , Alelos , Mutação com Ganho de Função , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Receptores da Eritropoetina/genética , Trombocitemia Essencial/genética
7.
Res Pract Thromb Haemost ; 6(2): e12672, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35316942

RESUMO

Background: Filamin (FLN) regulates many cell functions through its scaffolding activity cross-linking cytoskeleton and integrins. FLN was shown to inhibit integrin activity, but the exact mechanism remains unclear. Objectives: The aim of this study was to evaluate the role of filamin A (FLNa) subdomains on the regulation of integrin αIIbß3 signaling. Methods: Three FLNa deletion mutants were overexpressed in the erythro-megakaryocytic leukemic cell line HEL: Del1, which lacks the N-terminal CH1-CH2 domains mediating the FLNa-actin interaction; Del2, lacking the Ig-like repeat 21, which mediates the FLNa-ß3 interaction; and Del3, lacking the C-terminal Ig repeat 24, responsible for FLNa dimerization and interaction with the small Rho guanosine triphosphatase involved in actin cytoskeleton reorganisation. Fibrinogen binding to HEL cells in suspension and talin-ß3 proximity in cells adherent to immobilized fibrinogen were assessed before and after αIIbß3 activation by the protein kinase C agonist phorbol 12-myristate 13-acetate. Results: Our results show that FLNa-actin and FLNa-ß3 interactions negatively regulate αIIbß3 activation. Moreover, FLNa-actin interaction represses Rac activation, contributing to the negative regulation of αIIbß3 activation. In contrast, the FLNa dimerization domain, which maintains Rho inactive, was found to negatively regulate αIIbß3 outside-in signaling. Conclusion: We conclude that FLNa negatively controls αIIbß3 activation by regulating actin polymerization and restraining activation of Rac, as well as outside-in signaling by repressing Rho.

9.
Commun Biol ; 4(1): 1382, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887504

RESUMO

During ontogeny, macrophage populations emerge in the Yolk Sac (YS) via two distinct progenitor waves, prior to hematopoietic stem cell development. Macrophage progenitors from the primitive/"early EMP" and transient-definitive/"late EMP" waves both contribute to various resident primitive macrophage populations in the developing embryonic organs. Identifying factors that modulates early stages of macrophage progenitor development may lead to a better understanding of defective function of specific resident macrophage subsets. Here we show that YS primitive macrophage progenitors express Lyl-1, a bHLH transcription factor related to SCL/Tal-1. Transcriptomic analysis of YS macrophage progenitors indicate that primitive macrophage progenitors present at embryonic day 9 are clearly distinct from those present at later stages. Disruption of Lyl-1 basic helix-loop-helix domain leads initially to an increased emergence of primitive macrophage progenitors, and later to their defective differentiation. These defects are associated with a disrupted expression of gene sets related to embryonic patterning and neurodevelopment. Lyl-1-deficiency also induce a reduced production of mature macrophages/microglia in the early brain, as well as a transient reduction of the microglia pool at midgestation and in the newborn. We thus identify Lyl-1 as a critical regulator of primitive macrophages and microglia development, which disruption may impair resident-macrophage function during organogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Macrófagos/metabolismo , Microglia/metabolismo , Proteínas de Neoplasias/genética , Saco Vitelino/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Camundongos/embriologia , Proteínas de Neoplasias/metabolismo
10.
Blood ; 138(14): 1199-1200, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34618001

Assuntos
Megacariócitos
12.
Blood ; 138(22): 2231-2243, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34407546

RESUMO

Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Interferon-alfa/uso terapêutico , Mutação/efeitos dos fármacos , Transtornos Mieloproliferativos/tratamento farmacológico , Calreticulina/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Fatores Imunológicos/farmacologia , Interferon-alfa/farmacologia , Janus Quinase 2/genética , Estudos Longitudinais , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Estudos Prospectivos , Receptores de Trombopoetina/genética , Células Tumorais Cultivadas
14.
Hemasphere ; 5(7): e593, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34131633

RESUMO

Mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and primary myelofibrosis patients. To address the contribution of the human CALR mutants to the pathogenesis of myeloproliferative neoplasms (MPNs) in an endogenous context, we modeled the CALRdel52 and CALRins5 mutants by induced pluripotent stem cell (iPSC) technology using CD34+ progenitors from 4 patients. We describe here the generation of several clones of iPSC carrying heterozygous CALRdel52 or CALRins5 mutations. We showed that CALRdel52 induces a stronger increase in progenitors than CALRins5 and that both CALRdel52 and CALRins5 mutants favor an expansion of the megakaryocytic lineage. Moreover, we found that both CALRdel52 and CALRins5 mutants rendered colony forming unit-megakaryocyte (CFU-MK) independent from thrombopoietin (TPO), and promoted a mild constitutive activation level of signal transducer and activator of transcription 3 in megakaryocytes. Unexpectedly, a mild increase in the sensitivity of colony forming unit-granulocyte (CFU-G) to granulocyte-colony stimulating factor was also observed in iPSC CALRdel52 and CALRins5 compared with control iPSC. Moreover, CALRdel52-induced megakaryocytic spontaneous growth is more dependent on Janus kinase 2/phosphoinositide 3-kinase/extracellular signal-regulated kinase than TPO-mediated growth and opens a therapeutic window for treatments in CALR-mutated MPN. The iPSC models described here represent an interesting platform for testing newly developed inhibitors. Altogether, this study shows that CALR-mutated iPSC recapitulate MPN phenotypes in vitro and may be used for drug screening.

15.
Blood ; 138(17): 1603-1614, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34115825

RESUMO

EZH2, the enzymatic component of PRC2, has been identified as a key factor in hematopoiesis. EZH2 loss-of-function mutations have been found in myeloproliferative neoplasms, particularly in myelofibrosis, but the precise function of EZH2 in megakaryopoiesis is not fully delineated. Here, we show that EZH2 inhibition by small molecules and short hairpin RNA induces megakaryocyte (MK) commitment by accelerating lineage marker acquisition without change in proliferation. Later in differentiation, EZH2 inhibition blocks proliferation and polyploidization and decreases proplatelet formation. EZH2 inhibitors similarly reduce MK polyploidization and proplatelet formation in vitro and platelet levels in vivo in a JAK2V617F background. In transcriptome profiling, the defect in proplatelet formation was associated with an aberrant actin cytoskeleton regulation pathway, whereas polyploidization was associated with an inhibition of expression of genes involved in DNA replication and repair and an upregulation of cyclin-dependent kinase inhibitors, particularly CDKN1A and CDKN2D. The knockdown of CDKN1A and to a lesser extent CDKN2D could partially rescue the percentage of polyploid MKs. Moreover, H3K27me3 and EZH2 chromatin immunoprecipitation assays revealed that CDKN1A is a direct EZH2 target and CDKN2D expression is not directly regulated by EZH2, suggesting that EZH2 controls MK polyploidization directly through CDKN1A and indirectly through CDKN2D.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Megacariócitos/citologia , Trombopoese , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Megacariócitos/metabolismo , Camundongos , Interferência de RNA , Transcriptoma
16.
Elife ; 102021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059198

RESUMO

Thrombocytopenic disorders have been treated with the Thrombopoietin-receptor agonist Eltrombopag. Patients with the same apparent form of thrombocytopenia may respond differently to the treatment. We describe a miniaturized bone marrow tissue model that provides a screening bioreactor for personalized, pre-treatment response prediction to Eltrombopag for individual patients. Using silk fibroin, a 3D bone marrow niche was developed that reproduces platelet biogenesis. Hematopoietic progenitors were isolated from a small amount of peripheral blood of patients with mutations in ANKRD26 and MYH9 genes, who had previously received Eltrombopag. The ex vivo response was strongly correlated with the in vivo platelet response. Induced Pluripotent Stem Cells (iPSCs) from one patient with mutated MYH9 differentiated into functional megakaryocytes that responded to Eltrombopag. Combining patient-derived cells and iPSCs with the 3D bone marrow model technology allows having a reproducible system for studying drug mechanisms and for individualized, pre-treatment selection of effective therapy in Inherited Thrombocytopenias.


Platelets are tiny cell fragments essential for blood to clot. They are created and released into the bloodstream by megakaryocytes, giant cells that live in the bone marrow. In certain genetic diseases, such as Inherited Thrombocytopenia, the bone marrow fails to produce enough platelets: this leaves patients extremely susceptible to bruising, bleeding, and poor clotting after an injury or surgery. Certain patients with Inherited Thrombocytopenia respond well to treatments designed to boost platelet production, but others do not. Why these differences exist could be investigated by designing new test systems that recreate the form and function of bone marrow in the laboratory. However, it is challenging to build the complex and poorly understood bone marrow environment outside of the body. Here, Di Buduo et al. have developed an artificial three-dimensional miniature organ bioreactor system that recreates the key features of bone marrow. In this system, megakaryocytes were grown from patient blood samples, and hooked up to a tissue scaffold made of silk. The cells were able to grow as if they were in their normal environment, and they could shed platelets into an artificial bloodstream. After treating megakaryocytes with drugs to stimulate platelet production, Di Buduo et al. found that the number of platelets recovered from the bioreactor could accurately predict which patients would respond to these drugs in the clinic. This new test system enables researchers to predict how a patient will respond to treatment, and to tailor therapy options to each individual. This technology could also be used to test new drugs for Inherited Thrombocytopenias and other blood-related diseases; if scaled-up, it could also, one day, generate large quantities of lab-grown blood cells for transfusion.


Assuntos
Benzoatos/farmacologia , Plaquetas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hidrazinas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Pirazóis/farmacologia , Receptores de Trombopoetina/agonistas , Nicho de Células-Tronco , Trombocitopenia/tratamento farmacológico , Trombopoese/efeitos dos fármacos , Adulto , Idoso , Reatores Biológicos , Plaquetas/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Fibroínas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Megacariócitos/metabolismo , Pessoa de Meia-Idade , Miniaturização , Mutação , Cadeias Pesadas de Miosina/genética , Receptores de Trombopoetina/metabolismo , Trombocitopenia/sangue , Trombocitopenia/genética , Adulto Jovem
17.
Blood ; 138(6): 480-485, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34010413

RESUMO

Congenital amegakaryocytic thrombocytopenia (CAMT) is a severe inherited thrombocytopenia due to loss-of-function mutations affecting the thrombopoietin (TPO) receptor, MPL. Here, we report a new homozygous MPL variant responsible for CAMT in 1 consanguineous family. The propositus and her sister presented with severe thrombocytopenia associated with mild anemia. Next-generation sequencing revealed the presence of a homozygous MPLR464G mutation resulting in a weak cell-surface expression of the receptor in platelets. In cell lines, we observed a defect in MPLR464G maturation associated with its retention in the endoplasmic reticulum. The low cell-surface expression of MPLR464G induced very limited signaling with TPO stimulation, leading to survival and reduced proliferation of cells. Overexpression of a myeloproliferative neoplasm-associated calreticulin (CALR) mutant did not rescue trafficking of MPLR464G to the cell surface and did not induce constitutive signaling. However, it unexpectedly restored a normal response to eltrombopag (ELT), but not to TPO. This effect was only partially mimicked by the purified recombinant CALR mutant protein. Finally, the endogenous CALR mutant was able to restore the megakaryocyte differentiation of patient CD34+ cells carrying MPLR464G in response to ELT.


Assuntos
Benzoatos/farmacologia , Calreticulina , Síndrome Congênita de Insuficiência da Medula Óssea , Hidrazinas/farmacologia , Mutação de Sentido Incorreto , Pirazóis/farmacologia , Receptores de Trombopoetina , Trombocitopenia , Adulto , Substituição de Aminoácidos , Calreticulina/genética , Calreticulina/metabolismo , Criança , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea/tratamento farmacológico , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Feminino , Células HEK293 , Homozigoto , Humanos , Lactente , Masculino , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo , Trombocitopenia/tratamento farmacológico , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia
18.
Small GTPases ; 12(5-6): 399-415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33570449

RESUMO

Megakaryocytes (MKs) are the bone marrow (BM) cells that generate blood platelets by a process that requires: i) polyploidization responsible for the increased MK size and ii) cytoplasmic organization leading to extension of long pseudopods, called proplatelets, through the endothelial barrier to allow platelet release into blood. Low level of localized RHOA activation prevents actomyosin accumulation at the cleavage furrow and participates in MK polyploidization. In the platelet production, RHOA and CDC42 play opposite, but complementary roles. RHOA inhibits both proplatelet formation and MK exit from BM, whereas CDC42 drives the development of the demarcation membranes and MK migration in BM. Moreover, the RhoA or Cdc42 MK specific knock-out in mice and the genetic alterations in their down-stream effectors in human induce a thrombocytopenia demonstrating their key roles in platelet production. A better knowledge of Rho-GTPase signalling is thus necessary to develop therapies for diseases associated with platelet production defects.Abbreviations: AKT: Protein Kinase BARHGEF2: Rho/Rac Guanine Nucleotide Exchange Factor 2ARP2/3: Actin related protein 2/3BM: Bone marrowCDC42: Cell division control protein 42 homologCFU-MK: Colony-forming-unit megakaryocyteCIP4: Cdc42-interacting protein 4mDIA: DiaphanousDIAPH1; Protein diaphanous homolog 1ECT2: Epithelial Cell Transforming Sequence 2FLNA: Filamin AGAP: GTPase-activating proteins or GTPase-accelerating proteinsGDI: GDP Dissociation InhibitorGEF: Guanine nucleotide exchange factorHDAC: Histone deacetylaseLIMK: LIM KinaseMAL: Megakaryoblastic leukaemiaMARCKS: Myristoylated alanine-rich C-kinase substrateMKL: Megakaryoblastic leukaemiaMLC: Myosin light chainMRTF: Myocardin Related Transcription FactorOTT: One-Twenty Two ProteinPACSIN2: Protein Kinase C And Casein Kinase Substrate In Neurons 2PAK: P21-Activated KinasePDK: Pyruvate Dehydrogenase kinasePI3K: Phosphoinositide 3-kinasePKC: Protein kinase CPTPRJ: Protein tyrosine phosphatase receptor type JRAC: Ras-related C3 botulinum toxin substrate 1RBM15: RNA Binding Motif Protein 15RHO: Ras homologousROCK: Rho-associated protein kinaseSCAR: Suppressor of cAMP receptorSRF: Serum response factorSRC: SarcTAZ: Transcriptional coactivator with PDZ motifTUBB1: Tubulin ß1VEGF: Vascular endothelial growth factorWAS: Wiskott Aldrich syndromeWASP: Wiskott Aldrich syndrome proteinWAVE: WASP-family verprolin-homologous proteinWIP: WASP-interacting proteinYAP: Yes-associated protein.


Assuntos
Plaquetas/fisiologia , Citoesqueleto/fisiologia , Megacariócitos/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Plaquetas/enzimologia , Citoesqueleto/enzimologia , Humanos , Megacariócitos/enzimologia , Transdução de Sinais
20.
Nat Commun ; 11(1): 4886, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985500

RESUMO

Somatic mutations in the calreticulin (CALR) gene are associated with approximately 30% of essential thrombocythemia (ET) and primary myelofibrosis (PMF). CALR mutations, including the two most frequent 52 bp deletion (del52) and 5 bp insertion (ins5), induce a frameshift to the same alternative reading frame generating new C-terminal tails. In patients, del52 and ins5 induce two phenotypically distinct myeloproliferative neoplasms (MPNs). They are equally found in ET, but del52 is more frequent in PMF. We generated heterozygous and homozygous conditional inducible knock-in (KI) mice expressing a chimeric murine CALR del52 or ins5 with the human mutated C-terminal tail to investigate their pathogenic effects on hematopoiesis. Del52 induces greater phenotypic changes than ins5 including thrombocytosis, leukocytosis, splenomegaly, bone marrow hypocellularity, megakaryocytic lineage amplification, expansion and competitive advantage of the hematopoietic stem cell compartment. Homozygosity amplifies these features, suggesting a distinct contribution of homozygous clones to human MPNs. Moreover, homozygous del52 KI mice display features of a penetrant myelofibrosis-like disorder with extramedullary hematopoiesis linked to splenomegaly, megakaryocyte hyperplasia and the presence of reticulin fibers. Overall, modeling del52 and ins5 mutations in mice successfully recapitulates the differences in phenotypes observed in patients.


Assuntos
Calreticulina/genética , Mielofibrose Primária/genética , Trombocitemia Essencial/genética , Animais , Calreticulina/metabolismo , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/metabolismo , Homozigoto , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Insercional , Fenótipo , Mielofibrose Primária/metabolismo , Deleção de Sequência , Trombocitemia Essencial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...