Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 11(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066368

RESUMO

Plasmalogens or alkenylphospholipids are a sub-class of glycerophospholipids with numerous biological functions and are thought to have protective effects against metabolic disease. Dietary supplementation with alkylglycerols (AKGs) has been shown to increase endogenous plasmalogen levels, however effective modulation of different molecular plasmalogen species has not yet been demonstrated. In this study, the effects of an orally-administered AKG mix (a mixture of chimyl, batyl and selachyl alcohol at a 1:1:1 ratio) on plasma and tissue lipids, including plasmalogens, was evaluated. Mice on a Western-type diet were treated with either an AKG mix or vehicle (lecithin) for 1, 2, 4, 8 and 12 weeks. Treatment with the AKG mix significantly increased the total plasmalogen content of plasma, liver and adipose tissue as a result of elevations in multiple plasmalogen species with different alkenyl chains. Alkylphospholipids, the endogenous precursors of plasmalogens, showed a rapid and significant increase in plasma, adipose tissue, liver and skeletal muscle. A significant accumulation of alkyl-diacylglycerol and lyso-ether phospholipids was also observed in plasma and tissues. Additionally, the dynamics of plasmalogen-level changes following AKG mix supplementation differed between tissues. These findings indicate that oral supplementation with an AKG mix is capable of upregulating and maintaining stable expression of multiple molecular plasmalogen species in circulation and tissues.

2.
Cell ; 175(5): 1289-1306.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454647

RESUMO

Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Transdução de Sinais
4.
Biochim Biophys Acta ; 1861(2): 69-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26569052

RESUMO

OBJECTIVE: Oxidised low density lipoprotein (oxLDL) contributes to atherosclerosis, whereas high density lipoprotein (HDL) is known to be atheroprotective due, at least in part, to its ability to remove oxidised lipids from oxLDL. The molecular details of the lipid transfer process are not fully understood. We aimed to identify major oxidised lipid species of oxLDL and investigate their transfer upon co-incubation with HDL with varying levels of oxidation. APPROACH AND RESULTS: A total of 14 major species of oxidised phosphatidylcholine and oxidised cholesteryl ester from oxLDL were identified using an untargeted mass spectrometry approach. HDL obtained from pooled plasma of normolipidemic subjects (N=5) was oxidised under mild and heavy oxidative conditions. Non-oxidised (native) HDL and oxidised HDL were co-incubated with oxLDL, re-isolated and lipidomic analysis was performed. Lipoprotein surface lipids, oxidised phosphatidylcholines and oxidised cholesterols (7-ketocholesterol and 7ß-hydroxycholesterol), but not internal oxidised cholesteryl esters, were effectively transferred to native HDL. Saturated and monounsaturated lyso-phosphatidylcholines were also transferred from the oxLDL to native HDL. These processes were attenuated when HDL was oxidised under mild and heavy oxidative conditions. The impaired capacities were accompanied by an increase in a ratio of sphingomyelin to phosphatidylcholine and a reduction in phosphatidylserine content in oxidised HDL, both of which are potentially important regulators of the oxidised lipid transfer capacity of HDL. CONCLUSIONS: Our study has revealed the differential transfer efficiency of surface and internal oxidised lipids from oxLDL and their acceptance onto HDL. These capacities were modulated when HDL was itself oxidised.


Assuntos
Lipoproteínas HDL/química , Lipoproteínas LDL/química , Triglicerídeos/química , Adulto , Idoso , Transporte Biológico , Ésteres do Colesterol/química , Cobre/química , Jejum , Feminino , Humanos , Hidroxicolesteróis/química , Cetocolesteróis/química , Lipoproteínas HDL/isolamento & purificação , Lipoproteínas LDL/isolamento & purificação , Lisofosfatidilcolinas/química , Masculino , Pessoa de Meia-Idade , Oxidantes/química , Oxirredução , Fosfatidilcolinas/química , Fosfatidilserinas/química , Esfingomielinas/química , Triglicerídeos/isolamento & purificação
5.
Atherosclerosis ; 243(2): 598-608, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26545014

RESUMO

BACKGROUND AND AIM: We previously reported a negative association of circulating plasmalogens (phospholipids with proposed atheroprotective properties) with coronary artery disease. Plasmalogen modulation was previously demonstrated in animals but its effect on atherosclerosis was unknown. We assessed the effect of plasmalogen enrichment on atherosclerosis of murine models with differing levels of oxidative stress. METHODS AND RESULTS: Six-week old ApoE- and ApoE/glutathione peroxidase-1 (GPx1)-deficient mice were fed a high-fat diet with/without 2% batyl alcohol (precursor to plasmalogen synthesis) for 12 weeks. Mass spectrometry analysis of lipids showed that batyl alcohol supplementation to ApoE- and ApoE/GPx1-deficient mice increased the total plasmalogen levels in both plasma and heart. Oxidation of plasmalogen in the treated mice was evident from increased level of plasmalogen oxidative by-product, sn-2 lysophospholipids. Atherosclerotic plaque in the aorta was reduced by 70% (P = 5.69E-07) and 69% (P = 2.00E-04) in treated ApoE- and ApoE/GPx1-deficient mice, respectively. A 40% reduction in plaque (P = 7.74E-03) was also seen in the aortic sinus of only the treated ApoE/GPx1-deficient mice. Only the treated ApoE/GPx1-deficient mice showed a decrease in VCAM-1 staining (-28%, P = 2.43E-02) in the aortic sinus and nitrotyrosine staining (-78%, P = 5.11E-06) in the aorta. CONCLUSION: Plasmalogen enrichment via batyl alcohol supplementation attenuated atherosclerosis in ApoE- and ApoE/GPx1-deficient mice, with a greater effect in the latter group. Plasmalogen enrichment may represent a viable therapeutic strategy to prevent atherosclerosis and reduce cardiovascular disease risk, particularly under conditions of elevated oxidative stress and inflammation.


Assuntos
Doenças da Aorta/prevenção & controle , Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Glutationa Peroxidase/deficiência , Éteres de Glicerila/farmacologia , Plasmalogênios/sangue , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Glutationa Peroxidase/genética , Éteres de Glicerila/metabolismo , Mediadores da Inflamação/metabolismo , Lisofosfolipídeos/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/enzimologia , Oxirredução , Estresse Oxidativo , Placa Aterosclerótica , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/metabolismo , Glutationa Peroxidase GPX1
6.
Clin Sci (Lond) ; 124(5): 289-306, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23157406

RESUMO

Ischaemic heart disease accounts for nearly half of the global cardiovascular disease burden. Aetiologies relating to heart disease are complex, but dyslipidaemia, oxidative stress and inflammation are cardinal features. Despite preventative measures and advancements in treatment regimens with lipid-lowering agents, the high prevalence of heart disease and the residual risk of recurrent events continue to be a significant burden to the health sector and to the affected individuals and their families. The development of improved risk models for the early detection and prevention of cardiovascular events in addition to new therapeutic strategies to address this residual risk are required if we are to continue to make inroads into this most prevalent of diseases. Metabolomics and lipidomics are modern disciplines that characterize the metabolite and lipid complement respectively, of a given system. Their application to ischaemic heart disease has demonstrated utilities in population profiling, identification of multivariate biomarkers and in monitoring of therapeutic response, as well as in basic mechanistic studies. Although advances in magnetic resonance and mass spectrometry technologies have given rise to the fields of metabolomics and lipidomics, the plethora of data generated presents challenges requiring specific statistical and bioinformatics applications, together with appropriate study designs. Nonetheless, the predictive and re-classification capacity of individuals with various degrees of risk by the plasma lipidome has recently been demonstrated. In the present review, we summarize evidence derived exclusively by metabolomic and lipidomic studies in the context of ischaemic heart disease. We consider the potential role of plasma lipid profiling in assessing heart disease risk and therapeutic responses, and explore the potential mechanisms. Finally, we highlight where metabolomic studies together with complementary -omic disciplines may make further inroads into the understanding, detection and treatment of ischaemic heart disease.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Metabolômica/métodos , Isquemia Miocárdica/epidemiologia , Isquemia Miocárdica/metabolismo , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...