Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Metab ; 4: 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27651895

RESUMO

BACKGROUND: Calorie restriction (CR) prevents obesity and exerts anticancer effects in many preclinical models. CR is also increasingly being used in cancer patients as a sensitizing strategy prior to chemotherapy regimens. While the beneficial effects of CR are widely accepted, the mechanisms through which CR affects tumor growth are incompletely understood. In many cell types, CR and other nutrient stressors can induce autophagy, which provides energy and metabolic substrates critical for cancer cell survival. We hypothesized that limiting extracellular and intracellular substrate availability by combining CR with autophagy inhibition would reduce tumor growth more effectively than either treatment alone. RESULTS: A 30 % CR diet, relative to control diet, in nude mice resulted in significant decreases in body fat, blood glucose, and serum insulin, insulin-like growth factor-1, and leptin levels concurrent with increased adiponectin levels. In a xenograft model in nude mice involving H-Ras(G12V)-transformed immortal baby mouse kidney epithelial cells with (Atg5 (+/+) ) and without (Atg5 (-/-)) autophagic capacity, the CR diet (relative to control diet) genetically induced autophagy inhibition and their combination, each reduced tumor development and growth. Final tumor volume was greatest for Atg5 (+/+) tumors in control-fed mice, intermediate for Atg5 (+/+) tumors in CR-fed mice and Atg5 (-/-) tumors in control-fed mice, and lowest for Atg5 (-/-) tumors in CR mice. In Atg5 (+/+) tumors, autophagic flux was increased in CR-fed relative to control-fed mice, suggesting that the prosurvival effects of autophagy induction may mitigate the tumor suppressive effects of CR. Metabolomic analyses of CR-fed, relative to control-fed, nude mice showed significant decreases in circulating glucose and amino acids and significant increases in ketones, indicating CR induced negative energy balance. Combining glucose deprivation with autophagy deficiency in Atg5 (-/-) cells resulted in significantly reduced in vitro colony formation relative to glucose deprivation or autophagy deficiency alone. CONCLUSIONS: Combined restriction of extracellular (via CR in vivo or glucose deprivation in vitro) and intracellular (via autophagy inhibition) sources of energy and nutrients suppresses Ras-driven tumor growth more effectively than either CR or autophagy deficiency alone. Interventions targeting both systemic energy balance and tumor-cell intrinsic autophagy may represent a novel and effective anticancer strategy.

2.
Cancer Metab ; 2(1): 6, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24685128

RESUMO

BACKGROUND: The risk of pancreatic cancer, the 4th deadliest cancer for both men and women in the United States, is increased by obesity. Calorie restriction (CR) is a well-known dietary regimen that prevents or reverses obesity and suppresses tumorigenesis in a variety of animal models, at least in part via inhibition of mammalian target of rapamycin (mTOR) signaling. Branched-chain amino acids (BCAA), especially leucine, activate mTOR and enhance growth and proliferation of myocytes and epithelial cells, which is why leucine is a popular supplement among athletes. Leucine is also increasingly being used as a treatment for pancreatic cancer cachexia, but the effects of leucine supplementation on pancreatic tumor growth have not been elucidated. RESULTS: Supplementation with leucine increased pancreatic tumor growth in both lean (104 ± 17 mm3 versus 46 ± 13 mm3; P <0.05) and overweight (367 ± 45 mm3 versus 230 ± 39 mm3; P <0.01) mice, but tumor enhancement was associated with different biological outcomes depending on the diet. In the lean mice, leucine increased phosphorylation of mTOR and downstream effector S6 ribosomal protein, but in the overweight mice, leucine reduced glucose clearance and thus increased the amount of circulating glucose available to the tumor. CONCLUSIONS: These findings show that leucine supplementation enhances tumor growth in both lean and overweight mice through diet-dependent effects in a murine model of pancreatic cancer, suggesting caution against the clinical use of leucine supplementation for the purposes of skeletal muscle enhancement in cachectic patients.

3.
Cancer Prev Res (Phila) ; 6(10): 1046-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23980075

RESUMO

New molecular targets and intervention strategies for breaking the obesity-pancreatic cancer link are urgently needed. Using relevant spontaneous and orthotopically transplanted murine models of pancreatic cancer, we tested the hypothesis that dietary energy balance modulation impacts pancreatic cancer development and progression through an insulin-like growth factor (IGF)-I-dependent mechanism. In LSL-Kras(G12D)/Pdx-1-Cre/Ink4a/Arf(lox/+) mice, calorie restriction versus overweight- or obesity-inducing diet regimens decreased serum IGF-I, tumoral Akt/mTOR signaling, pancreatic desmoplasia, and progression to pancreatic ductal adenocarcinoma (PDAC), and increased pancreatic tumor-free survival. Serum IGF-I, Akt/mTOR signaling, and orthotopically transplanted PDAC growth were decreased in liver-specific IGF-I-deficient mice (vs. wild-type mice), and rescued with IGF-I infusion. Thus, dietary energy balance modulation impacts spontaneous pancreatic tumorigenesis induced by mutant Kras and Ink4a deficiency, the most common genetic alterations in human pancreatic cancer. Furthermore, IGF-I and components of its downstream signaling pathway are promising mechanistic targets for breaking the obesity-pancreatic cancer link.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Glicemia/metabolismo , Composição Corporal , Restrição Calórica , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Intervalo Livre de Doença , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Transplante de Neoplasias , Obesidade/complicações , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA