Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Virology ; 595: 110072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599031

RESUMO

Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.


Assuntos
Genoma Viral , Filogenia , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/classificação , Europa (Continente) , Doenças dos Suínos/virologia , Estados Unidos , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Coronavirus/classificação , Gastroenterite Suína Transmissível/virologia
2.
Pathogens ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392892

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever, an economically important disease of pigs, often with a high case fatality rate. ASFV has demonstrated low genetic diversity among isolates collected within Eurasia. To explore the influence of viral variants on clinical outcomes and infection dynamics in pigs experimentally infected with ASFV, we have designed a deep sequencing strategy. The variant analysis revealed unique SNPs at <10% frequency in several infected pigs as well as some SNPs that were found in more than one pig. In addition, a deletion of 10,487 bp (resulting in the complete loss of 21 genes) was present at a nearly 100% frequency in the ASFV DNA from one pig at position 6362-16849. This deletion was also found to be present at low levels in the virus inoculum and in two other infected pigs. The current methodology can be used for the currently circulating Eurasian ASFVs and also adapted to other ASFV strains and genotypes. Comprehensive deep sequencing is critical for following ASFV molecular evolution, especially for the identification of modifications that affect virus virulence.

3.
Vaccine ; 41(49): 7387-7394, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37932134

RESUMO

Currently, SARS-CoV-2 have been detected in farmed mink in 13 different countries. Due to the high susceptibility and transmissibility among mink, great concerns of mink serving as a reservoir to generate novel variants with unknown virulence and antigenic properties arose. These concerns have consequently resulted in entire mink productions being culled and banned. This study investigates the post-vaccination antibody response in the Canadian farmed mink vaccinated with a commercial Index spike protein-based vaccine, approved for use in cats, and compares the antibody response to that observed post infection in Danish farmed mink. Blood samples were obtained from 50 mink at the Canadian Centre for Fur Animal Research (CCFAR), Dalhousie University (Truro, Canada). The sera were initially analyzed for antibodies by enzyme-linked immunosorbent assay (ELISA), and selected sera was subsequently tested in a virus neutralization tests. The levels of neutralizing antibodies were evaluated for an ancestral D614G strain and a recent circulating SARS-CoV-2 variant of concern (Omicron BA.4). The results revealed that the vaccine induced a strong antibody response in mink by reaching antibody titer levels of up to 1:12800 in the ELISA. Moreover, high levels of neutralizing antibodies were obtained, and despite the great level of genetic differences between the ancestral and Omicron BA.4 strains, the vaccinated mink showed high levels of cross-reacting neutralizing antibodies. Interestingly, the antibody levels towards SARS-CoV-2 in the Canadian vaccinated mink were significantly higher than observed in recently SARS-CoV-2 infected Danish mink and equal to anamnestic responses following re-infection. In conclusion, the vaccine used in the Canadian farmed mink was able to induce a strong and broad-reacting antibody response in mink, which could limit the spread of SARS-CoV-2 in farmed mink and thereby reduce the risk of mink serving as a SARS-CoV-2 reservoir for human infections.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Gatos , Formação de Anticorpos , Canadá , Vison , SARS-CoV-2 , Vacinação/veterinária , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
4.
Viruses ; 15(10)2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896910

RESUMO

African swine fever virus (ASFV) causes severe hemorrhagic disease in domestic pigs and wild boar, often with high case fatality rates. The virus replicates in the circulating cells of the monocyte-macrophage lineage and within lymphoid tissues. The infection leads to high fever and a variety of clinical signs. In this study, it was observed that ASFV infection in pigs resulted in a >1000-fold increase in the level of circulating cell-free DNA (cfDNA), derived from the nuclei of host cells in the serum. This change occurred in parallel with the increase in circulating ASFV DNA. In addition, elevated levels (about 30-fold higher) of host mitochondrial DNA (mtDNA) were detected in the serum from ASFV-infected pigs. For comparison, the release of the cellular enzyme, lactate dehydrogenase (LDH), a commonly used marker of cellular damage, was also found to be elevated during ASFV infection, but later and less consistently. The sera from pigs infected with classical swine fever virus (CSFV), which causes a clinically similar disease to ASFV, were also tested but, surprisingly, this infection did not result in the release of cfDNA, mtDNA, or LDH. It was concluded that the level of cfDNA in the serum is a sensitive host marker of virulent ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Ácidos Nucleicos Livres , Suínos , Animais , Vírus da Febre Suína Africana/genética , Sus scrofa , DNA Mitocondrial
5.
Pathogens ; 12(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37624000

RESUMO

It is important to be able to detect and differentiate between distinct porcine enteric coronaviruses that can cause similar diseases. However, the existence of naturally occurring recombinant coronaviruses such as swine enteric coronavirus (SeCoV) can give misleading results with currently used diagnostic methods. Therefore, we have developed and validated three duplex real-time quantitative RT-PCR assays for the simultaneous detection of, and differentiation between, porcine epidemic diarrhea virus (PEDV) and SeCoV. Transmissible gastroenteritis virus (TGEV) is also detected by two out of these three assays. In addition, a novel triplex assay was set up that was able to detect and differentiate between these alphacoronaviruses and the porcine deltacoronavirus (PDCoV). The validated assays have low limits of detection, close to 100% efficiency, and were able to correctly identify the presence of PEDV and SeCoV in 55 field samples, whereas 20 samples of other pathogens did not give a positive result. Implementing one or more of these multiplex assays into the routine diagnostic surveillance for PEDV will ensure that the presence of SeCoV, TGEV, and PDCoV will not go unnoticed.

6.
Viruses ; 15(6)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376554

RESUMO

A seasonal trend of African swine fever (ASF) outbreaks in domestic pig farms has been observed in affected regions of Eastern Europe. Most outbreaks have been observed during the warmer summer months, coinciding with the seasonal activity pattern of blood-feeding insects. These insects may offer a route for introduction of the ASF virus (ASFV) into domestic pig herds. In this study, insects (hematophagous flies) collected outside the buildings of a domestic pig farm, without ASFV-infected pigs, were analyzed for the presence of the virus. Using qPCR, ASFV DNA was detected in six insect pools; in four of these pools, DNA from suid blood was also identified. This detection coincided with ASFV being reported in the wild boar population within a 10 km radius of the pig farm. These findings show that blood from ASFV-infected suids was present within hematophagous flies on the premises of a pig farm without infected animals and support the hypothesis that blood-feeding insects can potentially transport the virus from wild boars into domestic pig farms.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Fazendas , Lituânia , Biosseguridade , Sus scrofa , Surtos de Doenças/veterinária , Insetos
7.
Viruses ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560755

RESUMO

Porcine epidemic diarrhea virus (PEDV), belonging to the genus Alphacoronavirus, can cause serious disease in pigs of all ages, especially in suckling pigs. Differences in virulence have been observed between various strains of this virus. In this study, four pigs were inoculated with PEDV from Germany (intestine/intestinal content collected from pigs in 2016) and four pigs with PEDV from Italy (intestine/intestinal material collected from pigs in 2016). The pigs were re-inoculated with the same virus on multiple occasions to create a more robust infection and enhance the antibody responses. The clinical signs and pathological changes observed were generally mild. Two distinct peaks of virus excretion were seen in the group of pigs inoculated with the PEDV from Germany, while only one strong peak was seen for the group of pigs that received the virus from Italy. Seroconversion was seen by days 18 and 10 post-inoculation with PEDV in all surviving pigs from the groups that received the inoculums from Germany and Italy, respectively. Attempts to infect pigs with a swine enteric coronavirus (SeCoV) from Slovakia were unsuccessful, and no signs of infection were observed in the inoculated animals.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Diarreia/patologia , Fezes , Suínos
8.
Transbound Emerg Dis ; 69(6): 3858-3867, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36346271

RESUMO

African swine fever virus (ASFV) continues to spread across the world, and currently, there are no treatments or vaccines available to combat this virus. Reliable estimates of transmission parameters for ASFV are therefore needed to establish effective contingency plans. This study used data from controlled ASFV inoculations of pigs to assess the transmission parameters. Three models were developed with (binary, piecewise-linear and exponential) time-dependent levels of infectiousness based on latency periods of 3-5 days derived from the analysis of 294 ethylenediamine tetraacetic acid-stabilized blood samples originating from 16 pigs with direct and 10 pigs with indirect contact to 8 inoculated pigs. The models were evaluated for three different discrete latency periods of infection. The likelihood ratio test showed that a binary model had an equally good fit for a latency period of 4 or 5 days as the piecewise-linear and exponential model. However, for a latency period of 3 days, the piecewise-linear and exponential models had the best fit. The modelling was done in discrete time as testing was conducted on specific days. The main contribution of this study is the estimation of ASFV genotype II transmission through the air in a confined space. The estimated transmission parameters via air are not much lower than for direct contact between pigs. The estimated parameters should be useful for future simulations of control measures against ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Genótipo
9.
Viruses ; 14(7)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35891368

RESUMO

African swine fever is an important viral disease of wild and domestic pigs. To gain further knowledge of the properties of the currently circulating African swine fever virus (ASFV), experimental infections of young pigs (approximately 8 weeks of age) and pregnant sows (infected at about 100 days of gestation) with the genotype II ASFV Georgia/2007 were performed. The inoculated young pigs developed typical clinical signs of the disease and the infection was transmitted (usually within 3-4 days) to all of the "in contact" animals that shared the same pen. Furthermore, typical pathogical lesions for ASFV infection were found at necropsy. Inoculation of pregnant sows with the same virus also produced rapid onset of disease from post-infection day three; two of the three sows died suddenly on post-infection day five, while the third was euthanized on the same day for animal welfare reasons. Following necropsy, the presence of ASFV DNA was detected in tonsils, spleen and lymph nodes of some of the fetuses, but the levels of viral DNA were much lower than in these tissues from the sows. Thus, only limited transplacental transmission occurred during the course of this experiment. These studies contribute towards further understanding about the spread of this important viral disease in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Animais , DNA Viral , Feminino , Genótipo , Gravidez , Sus scrofa , Suínos
10.
Front Vet Sci ; 9: 1046263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686172

RESUMO

Introduction: Mosquitoes either biologically or mechanically transmit various vector-borne pathogens affecting pigs. Mosquito species display a wide variety of host preference, as well as host attraction and behaviours. Mosquito species attraction rates to- and feeding rates on pigs or other potential hosts, as well as the seasonal abundance of the mosquito species affects their pathogen transmission potential. Methods: We caught mosquitoes in experimental cages containing pigs situated in Romanian backyard farms. The host species of blood meals were identified with PCR and sequencing. Results: High feeding preferences for pigs were observed in Aedes vexans (90%), Anopheles maculipennis (80%) and Culiseta annulata (72.7%). However, due to a high abundance in the traps, Culex pipiens/torrentium were responsible for 37.9% of all mosquito bites on pigs in the Romanian backyards, despite low feeding rates on pigs in the cages (18.6%). We also found that other predominantly ornithophilic mosquito species, as well as mosquitoes that are already carrying a blood meal from a different (mammalian) host, were attracted to backyard pigs or their enclosure. Discussion: These results indicate that viraemic blood carrying, for instance, African swine fever virus, West-Nile virus or Japanese encephalitis virus could be introduced to these backyard pig farms and therefore cause an infection, either through subsequent feeding, via ingestion by the pig or by environmental contamination.

11.
Pathogens ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36678395

RESUMO

Insect production offers a sustainable source of nutrients for livestock. This comes with a risk for transmission of pathogens from the insects into the livestock sector, including viruses causing serious diseases, such as African swine fever virus (ASFV), classical swine fever virus and foot-and-mouth disease virus. ASFV is known to survive for a long time within animal meat and byproducts. Therefore, we conducted experimental exposure studies of insects to ASFV using larvae of two key insect species produced for food and feed, the mealworm; Tenebrio molitor, and the black soldier fly, Hermetia illucens. The larvae were exposed to ASFV POL/2015/Podlaskie, via oral uptake of serum or spleen material from ASFV-infected pigs. Using qPCR, the amounts of viral DNA present immediately after exposure varied from ~104.7 to 107.2 genome copies per insect. ASFV DNA was detectable in the larvae of H. illucens for up to 3 days post exposure and in T. molitor larvae for up to 9 days post exposure. To assess the presence of infectious virus within the larvae and with this, the risk of virus transmission via oral consumption, pigs were fed cakes containing larvae exposed to ASFV. Pigs that consumed 50 T. molitor or 50 H. illucens virus-exposed larvae did not become infected with ASFV. Thus, it appears, that in our experimental setting, the risk of ASFV transmission via consumption of unprocessed insect larvae, used as feed, is low.

12.
Viruses ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835139

RESUMO

African swine fever virus (ASFV) has become widespread in Europe, Asia and elsewhere, thereby causing extensive economic losses. The viral genome includes nearly 200 genes, but their expression within infected pigs has not been well characterized previously. In this study, four pigs were infected with a genotype II strain (ASFV POL/2015/Podlaskie); blood samples were collected before inoculation and at both 3 and 6 days later. During this period, a range of clinical signs of infection became apparent in the pigs. From the blood, peripheral blood mononuclear cells (PBMCs) were isolated. The transcription of the ASFV genes was determined using RNAseq on poly(A)+ mRNAs isolated from these cells. Only very low levels of virus transcription were detected in the PBMCs at 3 days post-inoculation (dpi) but, at 6 dpi, extensive transcription was apparent. This was co-incident with a large increase in the level of ASFV DNA within these cells. The pattern of the virus gene expression was very reproducible between the individual pigs. Many highly expressed genes have undefined roles. Surprisingly, some genes with key roles in virus replication were expressed at only low levels. As the functions of individual genes are identified, information about their expression becomes important for understanding their contribution to virus biology.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana/virologia , Genoma Viral , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Regulação Viral da Expressão Gênica , Leucócitos Mononucleares , Masculino , Suínos
13.
PLoS Pathog ; 17(11): e1010068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780574

RESUMO

Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.


Assuntos
COVID-19/veterinária , COVID-19/virologia , Vison/imunologia , Vison/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Fazendas , Seguimentos , Humanos , Mutação , Faringe/virologia , Filogenia , RNA Viral , Reinfecção/virologia , Sequenciamento Completo do Genoma
14.
Viruses ; 13(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199948

RESUMO

Bat species worldwide are receiving increased attention for the discovery of emerging viruses, cross-species transmission, and zoonoses, as well as for characterizing virus infections specific to bats. In a previous study, we investigated the presence of coronaviruses in faecal samples from bats at different locations in Denmark, and made phylogenies based on short, partial ORF1b sequences. In this study, selected samples containing bat coronaviruses from three different bat species were analysed, using a non-targeted approach of next-generation sequencing. From the resulting metagenomics data, we assembled full-genome sequences of seven distinct alphacoronaviruses, three astroviruses, and a polyomavirus, as well as partial genome sequences of rotavirus H and caliciviruses, from the different bat species. Comparisons to published sequences indicate that the bat alphacoronaviruses belong to three different subgenera-i.e., Pedacovirus, Nyctacovirus, and Myotacovirus-that the astroviruses may be new species in the genus Mamastrovirus, and that the polyomavirus could also be a new species, but unassigned to a genus. Furthermore, several viruses of invertebrates-including two Rhopalosiphum padi (aphid) viruses and a Kadipiro virus-present in the faecal material were assembled. Interestingly, this is the first detection in Europe of a Kadipiro virus.


Assuntos
Alphacoronavirus/genética , Astroviridae/genética , Quirópteros/virologia , Genoma Viral , Sequenciamento Completo do Genoma , Alphacoronavirus/classificação , Alphacoronavirus/isolamento & purificação , Animais , Astroviridae/classificação , Astroviridae/isolamento & purificação , Dinamarca , Fezes/virologia , Genômica/métodos , Fases de Leitura Aberta , Filogenia
15.
Front Microbiol ; 12: 698944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248922

RESUMO

In addition to humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit to animals that include hamsters, cats, dogs, mink, ferrets, tigers, lions, cynomolgus macaques, rhesus macaques, and treeshrew. Among these, mink are particularly susceptible. Indeed, 10 countries in Europe and North America reported SARS-CoV-2 infection among mink on fur farms. In Denmark, SARS-CoV-2 spread rapidly among mink farms and spilled-over back into humans, acquiring mutations/deletions with unknown consequences for virulence and antigenicity. Here we describe a mink-associated SARS-CoV-2 variant (Cluster 5) characterized by 11 amino acid substitutions and four amino acid deletions relative to Wuhan-Hu-1. Temporal virus titration, together with genomic and subgenomic viral RNA quantitation, demonstrated a modest in vitro fitness attenuation of the Cluster 5 virus in the Vero-E6 cell line. Potential alterations in antigenicity conferred by amino acid changes in the spike protein that include three substitutions (Y453F, I692V, and M1229I) and a loss of two amino acid residues 69 and 70 (ΔH69/V70), were evaluated in a virus microneutralization assay. Compared to a reference strain, the Cluster 5 variant showed reduced neutralization in a proportion of convalescent human COVID-19 samples. The findings underscore the need for active surveillance SARS-CoV-2 infection and virus evolution in susceptible animal hosts.

16.
J Fish Dis ; 44(9): 1369-1383, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34002876

RESUMO

Viral haemorrhagic septicaemia virus (VHSV) is the cause of an important listed disease in European rainbow trout (Oncorhynchus mykiss) aquaculture and can be present in a wide range of fish species, including marine fish, which can act as viral reservoir. Recent studies revealed putative genetic virulence markers of VHSV to rainbow trout highlighting the roles of the nucleoprotein, phosphoprotein and non-virion protein. Using reverse genetics, we produced recombinant viruses by introducing parts of or the entire nucleoprotein from a high-virulent isolate VHSV into a low-virulent backbone. Furthermore, we also made recombinant viruses by introducing residue modifications in the nucleoprotein that seem to play a role in virulence. Rainbow trout challenged with these recombinant viruses (rVHSVs) by intraperitoneal injection (IP) developed clinical signs and showed lower survival when compared to the parental rVHSV whereas fish challenged by immersion did not show clinical signs except for the high-virulent control. The mutations did not influence the viral growth in cell culture. The recombinant viruses and parental recombinant were unable to replicate and show cytopathic effect in EPC cells whereas the high-virulent control was well adapted in all the fish cell lines tested. We showed evidence that corroborates with the hypothesis that the nucleoprotein has virulence motifs associated with VHSV virulence in rainbow trout.


Assuntos
Septicemia Hemorrágica Viral/virologia , Novirhabdovirus/genética , Virulência/genética , Animais , Linhagem Celular , Doenças dos Peixes/virologia , Peixes , Injeções Intraperitoneais , Novirhabdovirus/patogenicidade , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Oncorhynchus mykiss/virologia
17.
Viruses ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919031

RESUMO

Atypical porcine pestivirus (APPV) was first discovered in North America in 2015 and was later shown to be associated with congenital tremor (CT) in piglets. CT is an occasional challenge in some Danish sow herds. Therefore, we initiated an observational case control study to clarify a possible relationship between CT and APPV in Danish pig production. Blood samples were collected from piglets affected by CT (n = 55) in ten different sow herds and from healthy piglets in five sow herds without a history of CT piglets (n = 25), as well as one sow herd with a sporadic occurrence of CT (n = 5). APPV was detected by RT-qPCR in all samples from piglets affected by CT and in three out of five samples from piglets in the herd with a sporadic occurrence of CT. In the herds without a history of CT, only one out of 25 piglets were positive for APPV. In addition, farmers or veterinarians in CT-affected herds were asked about their experience of the issue. CT is most often seen in gilt litters, and a substantial increase in pre-weaning mortality is only observed in severe cases. According to our investigations, APPV is a common finding in piglets suffering from CT in Denmark.


Assuntos
Pestivirus/genética , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , Animais Recém-Nascidos , Estudos de Casos e Controles , Dinamarca , Infecções por Pestivirus/veterinária , Reação em Cadeia da Polimerase em Tempo Real , Suínos
18.
Viruses ; 13(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917139

RESUMO

European bat lyssavirus type 1 (EBLV-1) is the causative agent for almost all reported rabies cases found in European bats. In recent years, increasing numbers of available EBLV-1 full genomes and their phylogenetic analyses helped to further elucidate the distribution and genetic characteristics of EBLV-1 and its two subtypes, namely EBLV-1a and EBLV-1b. Nonetheless, the absence of full-genome sequences from regions with known detections of EBLV-1 still limit the understanding of the phylogeographic relations between viruses from different European regions. In this study, a set of 21 archived Danish EBLV-1 samples from the years 1985 to 2009 was processed for the acquisition of full-genome sequences using a high-throughput sequencing approach. Subsequent phylogenetic analysis encompassing all available EBLV-1 full genomes from databases revealed the Danish sequences belong to the EBLV-1a subtype and further highlighted the distinct, close phylogenetic relationship of Danish, Dutch and German isolates in this region. In addition, the formation of five putative groups nearly exclusively formed by Danish isolates and the overall increased resolution of the EBLV-1a branch indicate a higher genetic diversity and spatial segregation for this sublineage than was previously known. These results emphasize the importance of phylogenetic analyses of full-genome sequences of lyssaviruses for genetic geography.


Assuntos
Quirópteros/virologia , Genoma Viral , Lyssavirus/classificação , Lyssavirus/genética , Filogenia , Raiva/veterinária , Animais , Arquivos , Mapeamento Cromossômico , Segregação de Cromossomos , Dinamarca , Sequenciamento de Nucleotídeos em Larga Escala , Raiva/virologia , Sequenciamento Completo do Genoma
19.
J Virol Methods ; 292: 114132, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741408

RESUMO

Several reverse genetics systems for viral haemorrhagic septicaemia virus (VHSV) have been developed over the last decade. These systems have been based on genotype Ia, IVa and IVb isolates and have used the fish cell line EPC, which is less susceptible to some VHSV isolates belonging to genotype I and genotypes II and III. While developing a reverse genetics system in our laboratories for VHSV genotype Ib, we realized that the isolate in interest (SE SVA 1033 9C) did not grow in EPC cells and it was necessary to adapt the reverse genetics protocols to the BF-2 fish cell line. This cell line is very sensitive to high temperatures and is therefore not compatible with the original protocols based on the use of recombinant vaccinia virus (vTF7-3) as a provider of the T7 RNA polymerase (T7-RNAP) to the system, which includes incubation periods at 37 °C. Transfection efficiency was assessed in BF-2 cells using a reporter plasmid and it showed to be highest when using Lipofectamine™ 3000 compared to other transfection reagents. A luciferase assay was performed to determine the optimal activity of T7-RNAP in BF-2 cells with different amounts of vTF7-3. We successfully recovered recombinant VHSV (rVHSV) in BF-2 cells by reducing the incubation time at 37 °C after transfection to both 3 and 6 h. Another strategy we attempted successfully was to transfect mammalian BHK-21 cells, which are routinely used to propagate vTF7-3, and after the 37 °C incubation period, a BF-2 cell suspension was added hypothesizing that the virions formed in the transfected mammalian cells would infect the subsequently added fish cells at 15 °C incubation over the following days. We have successfully recovered rVHSV from both BHK-21 with a BF-2 cells suspension as well as a new protocol for VHSV reverse genetics in BF-2 cells has been established.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Animais , Linhagem Celular , Peixes , Genótipo , Novirhabdovirus/genética , Genética Reversa
20.
Euro Surveill ; 26(5)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33541485

RESUMO

In June-November 2020, SARS-CoV-2-infected mink were detected in 290 of 1,147 Danish mink farms. In North Denmark Region, 30% (324/1,092) of people found connected to mink farms tested SARS-CoV-2-PCR-positive and approximately 27% (95% confidence interval (CI): 25-30) of SARS-CoV-2-strains from humans in the community were mink-associated. Measures proved insufficient to mitigate spread. On 4 November, the government ordered culling of all Danish mink. Farmed mink constitute a potential virus reservoir challenging pandemic control.


Assuntos
Animais Selvagens/virologia , COVID-19/epidemiologia , COVID-19/veterinária , Surtos de Doenças/veterinária , Reservatórios de Doenças/veterinária , Transmissão de Doença Infecciosa/veterinária , Vison/virologia , Pandemias/veterinária , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/transmissão , Animais , COVID-19/transmissão , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Dinamarca/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Reservatórios de Doenças/virologia , Fazendas , Genes Virais , Humanos , Incidência , Reação em Cadeia da Polimerase , Saúde Pública , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/classificação , Zoonoses Virais/virologia , Sequenciamento Completo do Genoma , Zoonoses/transmissão , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...