Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 13(5): 1826-1844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293145

RESUMO

Head and neck squamous cell carcinoma (HNSC) is the 6th most common cancer around the globe; its underlying molecular mechanisms and accurate molecular markers are still lacking. In this study, we explored hub genes and their potential signaling pathways through which these genes participate in the development of HNSC. The GSE23036 gene microarray dataset was attained from the GEO (Gene Expression Omnibus) database. Hub genes were identified via the Cytohubba plug-in application of the Cytoscape. The Cancer Genome Atlas (TCGA) datasets and cell lines (HOK and FuDu) were used to evaluate expression variations in the hub genes. Moreover, promoter methylation, genetic alteration, gene enrichment, miRNA network, and immunocyte infiltration analysis were also performed to confirm the oncogenic role and biomarker potential of the hub genes in HNSC patients. Based on the hub gene analysis results, four hub genes, including KNTC1 (Kinetochore Associated 1), CEP55 (Centrosomal protein of 55 kDa), AURKA (Aurora A Kinase), and ECT2 (Epithelial Cell Transforming 2), with the highest degree scores were denoted as hub genes. All these four genes were significantly up-regulated in HNSC clinical samples and cell lines relative to their counterparts. Overexpression of KNTC1, CEP55, AURKA, and ECT2 was also associated with poor survival and various clinical parameters of the HNSC patients. Methylation analysis through targeted bisulfite sequencing of HOK and FuDu cell lines revealed that the overexpression of KNTC1, CEP55, AURKA, and ECT2 hub genes was due to their promoter hypomethylation. Moreover, higher expressions of KNTC1, CEP55, AURKA, and ECT2 were positively correlated with the abundance of the CD4+ T cells and macrophage while with the reduction of CD8+ T cells in HNSC samples. Finally, gene enrichment analysis showed that all hub genes are involved in "nucleoplasm, centrosome, mitotic spindle, and cytosol" pathways. In conclusion, the KNTC1, CEP55, AURKA, and ECT2 genes could be potential biomarkers for HNSC patients and provide a novel insight into the diagnosis and treatment of the disease.

2.
Am J Transl Res ; 15(3): 1590-1606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056808

RESUMO

OBJECTIVES: Cancer is one of the most prominent causes of death world wide. Identification of novel cancer biomarkers woud help with cancer diagnosis and possible treatment. METHODS: In this study, we comprehensively studied the diagnostic, prognostic, and therapeutic values of the hepatitis A virus cellular receptor 1 (HAVCR1) gene across multiple cancers from a pan-cancer point of view via a detailed in silico approach. RESULTS: HAVCR1 expression was up-regulated in a variety of malignancies. The up-regulated HAVCR1 was closely related to the poor prognosis in patients with esophageal carcinoma (ESCA), lung adenocarcinoma (LUAD), and stomach adenocarcinoma (STAD). Moreover, DAVID analysis showed that HAVCR1, along with different other associated genes, was involved in numerous cancer-associated signaling pathways across ESCA, STAD, and LUAD. Furthermore, in these cancers, HAVCR1 was also found closely associated with some other parameters such as promoter methylation, tumor purity, level of CD8+ T immune cells, genomic alterations, and chemotherapeutic drugs. CONCLUSION: HAVCR1 was overexpressed in multiple tumors. However, the up-regulated HAVCR1 is a valuable diagnostic and prognostic biomarker as well as a therapeutic target in only ESCA, STAD, and LUAD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...