Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthropod Struct Dev ; 77: 101309, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879171

RESUMO

Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.


Assuntos
Anfípodes , Neuropeptídeos , Animais , Neuropeptídeos/metabolismo , Neurônios , Encéfalo , Neurópilo
2.
J Comp Neurol ; 531(10): 1032-1056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37016900

RESUMO

In mandibulate arthropods, the primary olfactory centers, termed olfactory lobes in crustaceans, are typically organized in distinct fields of dense synaptic neuropils called olfactory glomeruli. In addition to olfactory sensory neuron terminals and their postsynaptic efferents, the glomeruli are innervated by diverse neurochemically distinctive interneurons. The functional morphology of the olfactory glomeruli is understudied in crustaceans compared with insects and even less well understood and described in a particular crustacean subgroup, the Peracarida, which embrace, for example, Amphipoda and Isopoda. Using immunohistochemistry combined with confocal laser scanning microscopy, we analyzed the neurochemistry of the olfactory pathway in the amphipod Parhyale hawaiensis. We localized the biogenic amines serotonin and histamine as well as the neuropeptides RFamide, allatostatin, orcokinin, and SIFamide. As for other classical neurotransmitters, we stained for γ-aminobutyric acid and glutamate decarboxylase and used choline acetyltransferase as indicator for acetylcholine. Our study is another step in understanding principles of olfactory processing in crustaceans and can serve as a basis for understanding evolutionary transformations of crustacean olfactory systems.


Assuntos
Anfípodes , Animais , Anfípodes/fisiologia , Condutos Olfatórios/metabolismo , Interneurônios , Imuno-Histoquímica , Neurópilo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...