Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(2): 237-256, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894815

RESUMO

To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2 O), a powerful greenhouse gas, and increasing SOC may influence N2 O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2 O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta-analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2 O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g. biochar or non-pyrogenic C amendment application) may even decrease N2 O emissions.


Assuntos
Gases de Efeito Estufa , Solo , Agricultura , Carbono/análise , Óxido Nitroso/análise , Paris
2.
PeerJ ; 8: e9750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974092

RESUMO

The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.

3.
Glob Chang Biol ; 26(1): 219-241, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469216

RESUMO

There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international '4p1000' initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long-term experiments and space-for-time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils.


Assuntos
Sequestro de Carbono , Gases de Efeito Estufa , Agricultura , Carbono , Solo
4.
Plant Methods ; 15: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675175

RESUMO

BACKGROUND: Global warming is going to affect both agricultural production and carbon storage in soil worldwide. Given the complexity of the soil-plant-atmosphere continuum, in situ experiments of climate warming are necessary to predict responses of plants and emissions of greenhouse gases (GHG) from soils. Arrays of infrared (IR) heaters have been successfully applied in temperate and tropical agro-ecosystems to produce uniform and large increases in canopy surface temperature across research plots. Because this method had not yet been tested in the Arctic where consequences of global warming on GHG emission are expected to be largest, the objective of this work was to test hexagonal arrays of IR heaters to simulate a homogenous 3 °C warming of the surface, i.e. canopy and visible bare soil, of five 10.5-m2 plots in an Arctic meadow of northern Norway. RESULTS: Our results show that the IR warming setup was able to simulate quite accurately the target + 3 °C, thereby enabling us to simulate the extension of the growing season. Meadow yield increased under warming but only through the lengthening of the growing season. Our research also suggests that, when investigating agricultural systems on the Arctic, it is important to start the warming after the vegetation is established,. Indeed, differential emergence of meadow plants impaired the homogeneity of the warming with patches of bare soil being up to 9.5 °C warmer than patches of vegetation. This created a pattern of soil crusting, which further induced spatial heterogeneity of the vegetation. However, in the Arctic these conditions are rather rare as the soil exposed by snow melt is often covered by a layer of senescent vegetation which shelters the soil from direct radiation. CONCLUSIONS: Consistent continuous warming can be obtained on average with IR systems in an Arctic meadow, but homogenous spatial distribution requires that the warming must start after canopy closure.

5.
PLoS One ; 12(9): e0184383, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28873471

RESUMO

Evaluating biochars for their persistence in soil under field conditions is an important step towards their implementation for carbon sequestration. Current evaluations might be biased because the vast majority of studies are short-term laboratory incubations of biochars produced in laboratory-scale pyrolyzers. Here our objective was to investigate the stability of a biochar produced with a medium-scale pyrolyzer, first through laboratory characterization and stability tests and then through field experiment. We also aimed at relating properties of this medium-scale biochar to that of a laboratory-made biochar with the same feedstock. Biochars were made of Miscanthus biomass for isotopic C-tracing purposes and produced at temperatures between 600 and 700°C. The aromaticity and degree of condensation of aromatic rings of the medium-scale biochar was high, as was its resistance to chemical oxidation. In a 90-day laboratory incubation, cumulative mineralization was 0.1% for the medium-scale biochar vs. 45% for the Miscanthus feedstock, pointing to the absence of labile C pool in the biochar. These stability results were very close to those obtained for biochar produced at laboratory-scale, suggesting that upscaling from laboratory to medium-scale pyrolyzers had little effect on biochar stability. In the field, the medium-scale biochar applied at up to 25 t C ha-1 decomposed at an estimated 0.8% per year. In conclusion, our biochar scored high on stability indices in the laboratory and displayed a mean residence time > 100 years in the field, which is the threshold for permanent removal in C sequestration projects.


Assuntos
Carvão Vegetal/análise , Laboratórios , Poaceae/química , Aerobiose , Benzeno/análise , Biomarcadores/análise , Carbono/análise , Dióxido de Carbono/análise , Ácidos Carboxílicos/análise , Compostos Orgânicos/análise , Análise de Componente Principal , Estações do Ano , Solo/química , Temperatura
6.
J Agric Food Chem ; 62(17): 3791-9, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24720814

RESUMO

Biochar properties vary, and characterization of biochars is necessary for assessing their potential to sequester carbon and improve soil functions. This study aimed at assessing key surface properties of agronomic relevance for products from slow pyrolysis at 250-800 °C, hydrothermal carbonization (HTC), and flash carbonization. The study further aimed at relating surface properties to current characterization indicators. The results suggest that biochar chemical composition can be inferred from volatile matter (VM) and is consistent for corncob and miscanthus feedstocks and for the three tested production methods. High surface area was reached within a narrow temperature range around 600 °C, whereas cation exchange capacity (CEC) peaked at lower temperatures. CEC and pH values of HTC chars differed from those of slow pyrolysis biochars. Neither CEC nor surface area correlated well with VM or atomic ratios. These results suggest that VM and atomic ratios H/C and O/C are good indicators of the degree of carbonization but poor predictors of the agronomic properties of biochar.


Assuntos
Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Propriedades de Superfície , Temperatura
7.
New Phytol ; 200(2): 304-321, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24004027

RESUMO

SUMMARY: Model-data comparisons of plant physiological processes provide an understanding of mechanisms underlying vegetation responses to climate. We simulated the physiology of a piñon pine-juniper woodland (Pinus edulis-Juniperus monosperma) that experienced mortality during a 5 yr precipitation-reduction experiment, allowing a framework with which to examine our knowledge of drought-induced tree mortality. We used six models designed for scales ranging from individual plants to a global level, all containing state-of-the-art representations of the internal hydraulic and carbohydrate dynamics of woody plants. Despite the large range of model structures, tuning, and parameterization employed, all simulations predicted hydraulic failure and carbon starvation processes co-occurring in dying trees of both species, with the time spent with severe hydraulic failure and carbon starvation, rather than absolute thresholds per se, being a better predictor of impending mortality. Model and empirical data suggest that limited carbon and water exchanges at stomatal, phloem, and below-ground interfaces were associated with mortality of both species. The model-data comparison suggests that the introduction of a mechanistic process into physiology-based models provides equal or improved predictive power over traditional process-model or empirical thresholds. Both biophysical and empirical modeling approaches are useful in understanding processes, particularly when the models fail, because they reveal mechanisms that are likely to underlie mortality. We suggest that for some ecosystems, integration of mechanistic pathogen models into current vegetation models, and evaluation against observations, could result in a breakthrough capability to simulate vegetation dynamics.


Assuntos
Carbono/metabolismo , Juniperus/fisiologia , Modelos Biológicos , Pinus/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Secas , Juniperus/crescimento & desenvolvimento , Floema/crescimento & desenvolvimento , Floema/fisiologia , Pinus/crescimento & desenvolvimento , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Chuva , Estresse Fisiológico , Temperatura , Árvores
8.
Nature ; 478(7367): 49-56, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21979045

RESUMO

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Ecossistema , Compostos Orgânicos/análise , Solo/química , Bioengenharia , Carvão Vegetal/metabolismo , Mudança Climática , Congelamento , Compostos Orgânicos/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Microbiologia do Solo
9.
Rapid Commun Mass Spectrom ; 23(12): 1792-800, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19441048

RESUMO

The molecular composition of plant residues is suspected to largely govern the fate of their constitutive carbon (C) in soils. Labile compounds, such as metabolic carbohydrates, are affected differently from recalcitrant and structural compounds by soil-C stabilisation mechanisms. Producing (13)C-enriched plant residues with specifically labeled fractions would help us to investigate the fate in soils of the constitutive C of these compounds. The objective of the present research was to test (13)C pulse chase labeling as a method for specifically enriching the metabolic carbohydrate components of plant residues, i.e. soluble sugars and starch. Bean plants were exposed to a (13)CO(2)-enriched atmosphere for 0.5, 1, 2, 3 and 21 h. The major soluble sugars were then determined on water-soluble extracts, and starch on HCl-hydrolysable extracts. The results show a quick differential labeling between water-soluble and water-insoluble compounds. For both groups, (13)C-labeling increased linearly with time. The difference in delta(13)C signature between water-soluble and insoluble fractions was 7 per thousand after 0.5 h and 70 per thousand after 21 h. However, this clear isotopic contrast masked a substantial labeling variability within each fraction. By contrast, metabolic carbohydrates on the one hand (i.e. soluble sugars + starch) and other fractions (essentially cell wall components) on the other hand displayed quite homogeneous signatures within fractions, and a significant difference in labeling between fractions: delta(13)C = 414 +/- 3.7 per thousand and 56 +/- 5.5 per thousand, respectively. Thus, the technique generates labeled plant residues displaying contrasting (13)C-isotopic signatures between metabolic carbohydrates and other compounds, with homogenous signatures within each group. Metabolic carbohydrates being labile compounds, our findings suggest that the technique is particularly appropriate for investigating the effect of compound lability on the long-term storage of their constitutive C in soils.


Assuntos
Isótopos de Carbono/metabolismo , Phaseolus/metabolismo , Solo/análise , Coloração e Rotulagem/métodos , Amido/metabolismo , Isótopos de Carbono/análise , Phaseolus/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Amido/análise
10.
New Phytol ; 172(3): 500-13, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17083680

RESUMO

Transient starch production is thought to strongly control plant growth and response to elevated CO2. We tested this hypothesis with an experimentally based mechanistic model in Arabidopsis thaliana. Experiments were conducted on wild-type (WT) A. thaliana, starch-excess (sex1) and starchless (pgm) mutants under ambient and elevated CO2 conditions to determine parameters and validate the model. The model correctly predicted that mutant growth is approx. 20% of that in WT, and the absolute response of both mutants to elevated CO2 is an order of magnitude lower than in WT. For sex1, direct starch unavailability explained the growth responses. For pgm, we demonstrated experimentally that maintenance respiration is proportional to leaf soluble sugar concentration, which gave the necessary feedback mechanism on modelled growth. Our study suggests that the effects of sugar-starch cycling on growth can be explained by simple allocation processes, and the maximum rate of leaf growth (sink capacity) exerts a strong control over the response to elevated CO2 of herbaceous plants such as A. thaliana.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Carboidratos/fisiologia , Dióxido de Carbono/farmacologia , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Amido/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...