Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
J Bone Miner Res ; 22(9): 1397-407, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17539739

RESUMO

UNLABELLED: Deactivating mutations in the TNSALP gene cause HPP. Akp2(-/-) mice model severe infantile HPP, but there is no model for the relatively mild adult form. Here we report on mice with an induced mutation in Akp2 that affects splicing. The phenotype of homozygotes mirror aspects of the adult form of HPP. INTRODUCTION: Hypophosphatasia (HPP) is a clinically varied skeletal disorder resulting from deficiency of tissue nonspecific alkaline phosphatase (TNSALP). Mice lacking Akp2 model infantile HPP characterized by skeletal hypomineralization, impaired growth, seizures, and perinatal mortality. No animal model exists to study the less severe forms of the disease that typically present in later life. MATERIALS AND METHODS: N-ethyl-N-nitrosourea (ENU) mutagenesis was used to generate mouse models of human disease. A mouse with low plasma alkaline phosphatase (ALP) activity was identified by our clinical chemistry screen. Its offspring were used for inheritance studies and subjected to biochemical, histological, and radiological phenotyping. DNA was extracted for mapping and osteoblasts harvested for functional studies. RESULTS: We showed semidominant inheritance of the low ALP phenotype and mapped the underlying point mutation to Akp2. Affected offspring bear the splice site mutation 862 + 5G>A-a hypomorphic allele named Akp2(Hpp). The same mutation has been reported in a patient. Akp2(Hpp/+) mice have approximately 50% of normal plasma ALP but display no other biochemical or skeletal abnormalities. Unlike Akp2(-/-) mice, Akp2(Hpp/Hpp) mice have normal initial skeletal development and growth, a normal lifespan and do not have seizures. TNSALP is low but detectable in Akp2(Hpp/Hpp) plasma. Osteoblasts display approximately 10% of normal ALP activity and reduced intracellular inorganic phosphate levels, yet are capable of normal mineralization in vitro. TNSALP substrates are significantly elevated in urine (inorganic pyrophosphate and phosphoethanolamine) and plasma (pyridoxal 5'-phosphate), whereas plasma inorganic pyrophosphate levels are normal. Akp2(Hpp/Hpp) mice develop late-onset skeletal disease, notably defective endochondral ossification and bone mineralization that leads to arthropathies of knees and shoulders. CONCLUSIONS: Akp2(Hpp/Hpp) mice mirror a number of clinical features of the human adult form of HPP. These mice provide for the first time an animal model of late onset HPP that will be valuable in future mechanistic studies and for the evaluation of therapies such as those aimed at HPP.


Assuntos
Fosfatase Alcalina/genética , Modelos Animais de Doenças , Genes Dominantes , Hipofosfatasia/genética , Mutação , Splicing de RNA , Animais , Sequência de Bases , DNA Complementar , Camundongos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fenótipo
4.
Genetica ; 122(1): 47-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15619960

RESUMO

With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.


Assuntos
Mapeamento Cromossômico , Modelos Animais de Doenças , Genoma , Camundongos/genética , Animais , Mutação , Fenótipo
5.
Comp Funct Genomics ; 5(2): 123-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-18629060

RESUMO

Three mutant mice with pigmentation phenotypes were recovered from a genomewide random mouse chemical mutagenesis study. White toes (Whto; MGI:1861986), Belly spot and white toes (Bswt; MGI:2152776) and Dark footpads 2 (Dfp2; MGI:1861991) were identified following visual inspection of progeny from a male exposed to the point mutagen ethylnitrosourea (ENU). In order to rapidly localize the causative mutations, genome-wide linkage scans were performed on pooled DNA samples from backcross animals for each mutant line. Whto was mapped to proximal mouse chromosome (Mmu) 7 between Cen (the centromere) and D7Mit112 (8.0 cM from the centromere), Bswt was mapped to centric Mmul between D1Mit214 (32.1 cM) and D1Mit480 (32.8 cM) and Dfp2 was mapped to proximalMmu4 between Cen and D4Mit18 (5.2 cM). Whto, Bswt and Dfp2 may provide novel starting points in furthering the elucidation of genetic and biochemical pathways relevant to pigmentation and associated biological processes.

6.
Trends Biotechnol ; 21(5): 224-32, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12727384

RESUMO

Few would deny that the pharmaceutical industry's investment in genomics throughout the 1990s has yet to deliver in terms of drugs on the market. The reasons are complex and beyond the scope of this review. The unique ability to manipulate the mouse genome, however, has already had a positive impact on all stages of the drug discovery process and, increasingly, on the drug development process too. We give an overview of some recent applications of so-called 'transgenic' mouse technology in pharmaceutical research and development. We show how genetic manipulation in the mouse can be employed at multiple points in the drug discovery and development process, providing new solutions to old problems.


Assuntos
Desenho de Fármacos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Engenharia Genética/métodos , Genoma , Genômica/métodos , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Animais , Humanos , Camundongos
7.
Mamm Genome ; 13(10): 595-602, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12420138

RESUMO

We used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for both gene function studies and use as new animal models of human disease (Nolan et al. 2000b). One focus of the program was the development of a blood biochemistry screen. At 8-12 weeks of age, approximately 300 ml of blood was collected from F1 offspring of ENU mutagenized male mice. This yielded approximately 125 ml of plasma, used to perform a profile of 17 standard biochemical tests on an Olympus analyzer. Cohorts of F1 mice were also aged and then retested to detect late onset phenotypes. In total, 1,961 F1s were screened. Outliers were identified by running means and standard deviations. Of 70 mice showing consistent abnormalities in plasma biochemistry, 29 were entered into inheritance testing. Of these, 9 phenotypes were confirmed as inherited, 10 found not to be inherited, and 10 are still being tested. Inherited mutant phenotypes include abnormal lipid profiles (low total and HDL cholesterol, high triglycerides); abnormalities in bone and liver metabolism (low ALP, high ALP, high ALT, and AST); abnormal plasma electrolyte levels (high sodium and chloride); as well as phenotypes of interest for the study of diabetes (high glucose). The gene loci bearing the mutations are currently being mapped and further characterized. Our results have validated our biochemical screen, which is applicable to other mutagenesis projects, and we have produced a new set of mutants with defined metabolic phenotypes.


Assuntos
Fenótipo , Plasma/química , Animais , Modelos Animais de Doenças , Etilnitrosoureia/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutagênese
8.
Nat Genet ; 30(4): 385-93, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11912495

RESUMO

Proteome analysis is a fundamental step in systematic functional genomics. Here we have resolved 8,767 proteins from the mouse brain proteome by large-gel two-dimensional electrophoresis. We detected 1,324 polymorphic proteins from the European collaborative interspecific backcross. Of these, we mapped 665 proteins genetically and identified 466 proteins by mass spectrometry. Qualitatively polymorphic proteins, to 96%, reflect changes in conformation and/or mass. Quantitatively polymorphic proteins show a high frequency (73%) of allele-specific transmission in codominant heterozygotes. Variations in protein isoforms and protein quantity often mapped to chromosomal positions different from that of the structural gene, indicating that single proteins may act as polygenic traits. Genetic analysis of proteomes may detect the types of polymorphism that are most relevant in disease-association studies.


Assuntos
Encéfalo/fisiologia , Polimorfismo Genético , Alelos , Animais , Encéfalo/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Cruzamentos Genéticos , DNA/metabolismo , Eletroforese em Gel Bidimensional , Feminino , Ligação Genética , Marcadores Genéticos , Genótipo , Heterozigoto , Espectrometria de Massas , Camundongos , Modelos Genéticos , Hibridização de Ácido Nucleico , Fenótipo , Reação em Cadeia da Polimerase , Conformação Proteica , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...