Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Soft Robot ; 10(5): 937-947, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37042697

RESUMO

The design of soft actuators is often focused on achieving target trajectories or delivering specific forces and torques, rather than controlling the impedance of the actuator. This article outlines a new soft, tunable pneumatic impedance module based on an antagonistic actuator setup of textile-based pneumatic actuators intended to deliver bidirectional torques about a joint. Through mechanical programming of the actuators (select tuning of geometric parameters), the baseline torque to angle relationship of the module can be tuned. A high bandwidth fluidic controller that can rapidly modulate the pressure at up to 8 Hz in each antagonistic actuator was also developed to enable tunable impedance modulation. This high bandwidth was achieved through the characterization and modeling of the proportional valves used, derivation of a fluidic model, and derivation of control equations. The resulting impedance module was capable of modulating its stiffness from 0 to 100 Nm/rad, at velocities up to 120°/s and emulating asymmetric and nonlinear stiffness profiles, typical in wearable robotic applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36288217

RESUMO

To reinstate human-like locomotion by using robotic prosthetics, orthotics or exoskeletons, a main challenge is how to coordinate the motion of these devices with that of the biological limbs. One approach to overcome this challenge is to identify firstly the relationships that exist between the kinematics and kinetics of the lower extremity joints and limbs. In this work we aimed to continuously estimate sagittal plane ankle, knee and hip moments using shank or thigh angles. For this purpose, neural network and wavelets were used in a nonlinear auto-regressive model with exogenous inputs. This approach circumvented the need for switching rules or intermediate parameters. To assess the performance of the estimator, four case studies were developed. First, thigh angles (inputs) were used to estimate hip moments (outputs). Second, thigh angles were used to estimate knee moments. Third, ankle moments were estimated using thigh angles, and in the fourth case study, ankle moments were estimated using shank angles. Three different databases involving 106 subjects at different walking speeds were used to evaluate estimation quality. The testing procedure involved both inter-subject and intra-subject evaluations. The best estimation performance was observed when ankle moments were estimated from shank angles. The weakest estimation performance was observed when knee moments were estimated using thigh angles at 0.5 m/s. For this case, the estimation quality was much better at 1.5 m/s. Average RMS errors were 0.13- 0.15, 0.10- 0.13, and 0.09- 0.12 [Nm/kg] for hip, knee and ankle moments, respectively. Average mean absolute errors MAEs were 0.10- 0.11, 0.07- 0.10, and 0.06- 0.08 [Nm/kg] for hip, knee and ankle moments, respectively. Average correlation coefficients were 0.90- 0.98 and 0.98- 0.99 for hip and ankle moment estimations. The value for knee was comparable only at high speed (0.96 for 1.5 m/s), while it was less accurate at slow speed (0.71 for 0.5 m/s). In general, for all of the joints, the estimation accuracy was comparable with that of other studies, although one source of input was employed (either shank or thigh angle).


Assuntos
Perna (Membro) , Coxa da Perna , Humanos , Extremidade Inferior , Caminhada , Articulação do Joelho , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(10): 2224-2235, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822301

RESUMO

In this study, we estimated the multi-directional ankle mechanical impedance in two degrees-of-freedom (DOF) during standing, and determined how the stiffness, damping, and inertia vary with ankle angle and ankle torque at different postures. Fifteen subjects stood on a vibrating instrumented platform in four stationary postures, while subjected to pulse train perturbations in both the sagittal and frontal planes of motion. The four stationary postures were selected to resemble stages within the stance phase of the gait cycle: including post-heel-strike during the loading response, mid-stance, post-mid-stance, and just before the heel rises from the ground in terminal-stance phase. In general, the ankle stiffness and damping increased in all directions as the foot COP moved forward, and more torque is generated in plantarflexion. Interestingly, the multi-directional ankle impedance during standing showed a similar shape and major tilt axes to the results of non-loaded scenarios. However, there were notable differences in the impedance amplitude when the ankle was not under bodyweight loading. Last, the stiffness during standing had similar amplitudes ranges to the time-varying ankle stiffness during the stance phase of dynamic walking estimated in previous studies. These results have implications on the design of new, less physically intense, biomechanics experiments aimed at people with neuromuscular disorders or other physical impairments who cannot complete a standard gait test.


Assuntos
Articulação do Tornozelo , Tornozelo , Fenômenos Biomecânicos , Impedância Elétrica , Marcha , Postura , Caminhada
4.
IEEE Int Conf Rehabil Robot ; 2017: 1413-1418, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28814018

RESUMO

This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.


Assuntos
Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Caminhada/fisiologia , Adulto , Humanos , Masculino , Projetos de Pesquisa , Vibração , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA