Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 41(11): 1618-1632, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36914885

RESUMO

Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Transcriptoma/genética , Linfócitos T , Imunoterapia Adotiva , Linhagem Celular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Linhagem Celular Tumoral
2.
Cell Oncol (Dordr) ; 46(1): 227-235, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36409438

RESUMO

BACKGROUND: T cell receptor fusion constructs (TRuC) consist of an antibody-based single chain variable fragment (scFv) fused to a T cell receptor chain (TCR) and allow recognition of cancer cells in an HLA-independent manner. Unlike chimeric antigen receptors (CAR), TRuC are integrated into the TCR complex resulting in a functional chimera with novel specificity, whilst retaining TCR signaling. To further enhance anti-tumor function, we expressed a PD-1-CD28 fusion receptor in TRuC T cells aiming to prevent tumor-induced immune suppression and T cell anergy. METHODS: The activation level of engineered T cells was investigated in co-culture experiments with tumor cells followed by quantification of released cytokines using ELISA. To study T cell-mediated tumor cell lysis in vitro, impedance-based real-time tumor cell killing and LDH release was measured. Finally, two xenograft mouse cancer models were employed to explore the therapeutic potential of engineered T cells. RESULTS: In co-culture assays, co-expression of PD-1-CD28 enhanced cytokine production of TRuC T cells. This effect was dependent on PD-L1 to PD-1-CD28 interactions, as blockade of PD-L1 amplified IFN-γ production in unmodified TRuC T cells to a greater level compared to TRuC-PD-1-CD28 T cells. In vivo, PD-1-CD28 co-expression supported the anti-tumor efficacy of TRuC T cells in two xenograft mouse cancer models. CONCLUSION: Together, these results demonstrate the therapeutic potential of PD-1-CD28 co-expression in TRuC T cells to prevent PD-L1-induced T cell hypofunction.


Assuntos
Neoplasias , Linfócitos T , Humanos , Camundongos , Animais , Antígenos CD28/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Mesotelina , Receptores de Antígenos de Linfócitos T/metabolismo , Linhagem Celular Tumoral
3.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34083764

RESUMO

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Assuntos
Imunoterapia Adotiva , Neoplasias Pancreáticas , Receptores CXCR6/metabolismo , Linfócitos T , Animais , Terapia Baseada em Transplante de Células e Tecidos , Mesotelina , Camundongos , Neoplasias Pancreáticas/terapia , Receptores de Quimiocinas/genética
5.
Leukemia ; 35(8): 2243-2257, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33414484

RESUMO

Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia Experimental/terapia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Feminino , Humanos , Leucemia Experimental/imunologia , Leucemia Experimental/patologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Linfócitos T/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Blood ; 136(12): 1407-1418, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32483603

RESUMO

Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCRß chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon γ), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-T cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-CAR-T cells clearly controlled CD19+ leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR.


Assuntos
Sistemas CRISPR-Cas , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/genética , Transdução Genética , Células Tumorais Cultivadas
7.
Clin Cancer Res ; 25(19): 5890-5900, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31285373

RESUMO

PURPOSE: Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN: BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS: Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS: We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Receptores ErbB/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/genética , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Mesotelina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias Pancreáticas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncogene ; 38(26): 5174-5190, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30914800

RESUMO

Altered expression of regulatory RNA-binding proteins (RBPs) in cancer leads to abnormal expression of mRNAs encoding many factors involved in cancer hallmarks. While conventional anticancer therapies usually target one pathway at a time, targeting key RBP would affect multiple genes and thus overcome drug resistance. Among the Tristetraprolin family of RBP, TIS11b/BRF1/ZFP36L1 mediates mRNA decay through binding to Adenylate/Uridylate (AU-rich elements) in mRNA 3'-untranslated region and recruitment of mRNA degradation enzymes. Here, we show that TIS11b is markedly underexpressed in three breast cancer cell lines, as well as in breast tumor samples. We hypothesized that restoring intracellular TIS11b levels could impair cancer cell phenotypic traits. We thus generated a derivative of TIS11b called R9-ZnCS334D, by combining N-terminal domain deletion, serine-to-aspartate substitution at position 334 to enhance the function of the protein and fusion to the cell-penetrating peptide polyarginine R9. R9-ZnCS334D not only blunted secretion of vascular endothelial growth factor (VEGF) but also inhibited proliferation, migration, invasion, and anchorage-independent growth of murine 4T1 or human MDA-MB-231 breast cancer cells. Moreover, R9-ZnCS334D prevented endothelial cell organization into vessel-like structures, suggesting that it could potentially target various cell types within the tumor microenvironment. In vivo, injection of R9-ZnCS334D in 4T1 tumors impaired tumor growth, decreased tumor hypoxia, and expression of the epithelial-to-mesenchymal transition (EMT) markers Snail, Vimentin, and N-cadherin. R9-ZnCS334D also hindered the expression of chemokines and proteins involved in cancer-related inflammation and invasion including Fractalkine (CX3CL1), SDF-1 (CXCL12), MCP-1 (CCL2), NOV (CCN3), and Pentraxin-3 (PTX3). Collectively, our data indicate that R9-ZnCS334D counteracts multiple traits of breast cancer cell aggressiveness and suggest that this novel protein could serve as the basis for innovative multi-target therapies in cancer.


Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Estabilidade de RNA , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Animais , Células COS , Carcinogênese/metabolismo , Células Cultivadas , Chlorocebus aethiops , Feminino , Mutação com Ganho de Função/fisiologia , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Estabilidade de RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Fatores Associados à Proteína de Ligação a TATA/genética , Dedos de Zinco/genética
9.
Br J Cancer ; 120(1): 79-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429531

RESUMO

BACKGROUND: CD16-chimeric antigen receptors (CAR) T cells recognise the Fc-portion of therapeutic antibodies, which can enable the selective targeting of different antigens. Limited evidence exists as to which CD16-CAR design and antibody partner might be most effective. We have hypothesised that the use of high-affinity CD16 variants, with increased Fc-terminus antibody affinity, combined with Fc-engineered antibodies, would provide superior CD16-CAR T cell efficacy. METHODS: CD16-CAR T (wild-type or variants) cells were co-cultured with Panc-1 pancreatic cancer, Raji lymphoma or A375 melanoma cells in the presence or absence of anti-CD20, anti-MCSP, wild-type or the glycoengineered antibody variants. The endpoints were proliferation, activation, and cytotoxicity in vitro. RESULTS: The CD16 158 V variant of CD16-CAR T cells showed increased cytotoxic activity against all the tested cancer cells in the presence of the wild-type antibody directed against MCSP or CD20. Glycoengineered antibodies enhanced CD16-CAR T cell activity irrespective of CD16 polymorphisms as compared with the wild-type antibody. The combination of the glycoengineered antibodies with the CD16-CAR 158 V variant synergised as seen by the increase in all endpoints. CONCLUSION: These results indicate that CD16-CAR with the high-affinity CD16 variant 158 V, combined with Fc-engineered antibodies, have high anti-tumour efficacy.


Assuntos
Imunoterapia Adotiva , Imunoterapia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Polimorfismo Genético , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de IgG/imunologia , Rituximab/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
10.
Blood ; 132(23): 2484-2494, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30275109

RESUMO

The CD33-targeting bispecific T-cell engager (BiTE) AMG 330 proved to be highly efficient in mediating cytolysis of acute myeloid leukemia (AML) cells in vitro and in mouse models. Yet, T-cell activation is correlated with upregulation of programmed cell death-ligand 1 (PD-L1) and other inhibitory checkpoints on AML cells that confer adaptive immune resistance. PD-1 and PD-L1 blocking agents may counteract T-cell dysfunction, however, at the expense of broadly distributed immune-related adverse events (irAEs). We developed a bifunctional checkpoint inhibitory T cell-engaging (CiTE) antibody that combines T-cell redirection to CD33 on AML cells with locally restricted immune checkpoint blockade. This is accomplished by fusing the extracellular domain of PD-1 (PD-1ex), which naturally holds a low affinity to PD-L1, to an αCD3.αCD33 BiTE-like scaffold. By a synergistic effect of checkpoint blockade and avidity-dependent binding, the PD-1ex attachment increases T-cell activation (3.3-fold elevation of interferon-γ) and leads to efficient and highly selective cytotoxicity against CD33+PD-L1+ cell lines (50% effective concentration = 2.3-26.9 pM) as well as patient-derived AML cells (n = 8). In a murine xenograft model, the CiTE induces complete AML eradication without initial signs of irAEs as measured by body weight loss. We conclude that our molecule preferentially targets AML cells, whereas high-affinity blockers, such as clinically approved anticancer agents, also address PD-L1+ non-AML cells. By combining the high efficacy of T-cell engagers with immune checkpoint blockade in a single molecule, we expect to minimize irAEs associated with the systemic application of immune checkpoint inhibitors and suggest high therapeutic potential, particularly for patients with relapsed/ refractory AML.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Complexo CD3 , Leucemia Mieloide Aguda , Receptor de Morte Celular Programada 1 , Proteínas Recombinantes de Fusão , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Anticorpos de Cadeia Única , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Proteínas de Neoplasias/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/uso terapêutico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Immunol ; 9: 1955, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214445

RESUMO

Background: Interaction of the programmed death receptor 1 (PD-1) and its ligand, PD-L1, suppresses T cell activity and permits tumors to evade T cell-mediated immune surveillance. We have recently demonstrated that antigen-specific CD8+ T cells transduced with a PD1-CD28 fusion protein are protected from PD-1-mediated inhibition. We have now investigated the potential of PD1-CD28 fusion protein-transduced CD4+ T cells alone or in combination with CD8+ T cells for immunotherapy of pancreatic cancer and non-Hodgkin lymphoma. Methods: OVA-specific CD4+ and CD8+ were retrovirally transduced with the PD1-CD28 fusion protein. Cytokine release, proliferation, cytotoxic activity, and phenotype of transduced T cells were assessed in the context of Panc02-OVA (murine pancreatic cancer model) and E.G7-PD-L1 (murine T cell lymphoma model) cells. Results: Stimulation of PD1-CD28 fusion protein-transduced CD4+ T cells with anti-CD3 and recombinant PD-L1 induced specific T cell activation, as measured by IFN-y release and T cell proliferation. Coculture with Panc02-OVA or E.G7-PD-L1 tumor cells also led to specific activation of CD4+ T cells. Cytokine release and T cell proliferation was most effective when tumor cells simultaneously encountered genetically engineered CD4+ and CD8+ T cells. Synergy between both cell populations was also observed for specific tumor cell lysis. T cell cytotoxicity was mediated via granzyme B release and mediated enhanced tumor control in vivo. Transduced CD4+ and CD8+ T cells in co-culture with tumor cells developed a predominant central memory phenotype over time. Different ratios of CD4+ and CD8+ transduced T cells led to a significant increase of IFN-y and IL-2 secretion positively correlating with CD4+ T cell numbers used. Mechanistically, IL-2 and MHC-I were central to the synergistic activity of CD4+ and CD8+ T cells, since neutralization of IL-2 prevented the crosstalk between these cell populations. Conclusion: PD1-CD28 fusion protein-transduced CD4+ T cells significantly improved anti-tumoral effect of fusion protein-transduced CD8+ T cells. Thus, our results indicate that PD1-CD28 fusion protein-transduced CD4+ T cells have the potential to overcome the PD-1-PD-L1 immunosuppressive axis in pancreatic cancer and non-Hodgkin lymphoma.


Assuntos
Transferência Adotiva , Antígenos CD28/imunologia , Linfócitos T CD8-Positivos , Linfoma não Hodgkin/terapia , Neoplasias Experimentais/terapia , Neoplasias Pancreáticas/terapia , Receptor de Morte Celular Programada 1/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T Auxiliares-Indutores , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígenos CD28/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/patologia , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/transplante , Transdução Genética
12.
Front Oncol ; 8: 285, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090763

RESUMO

T cells have been established as core effectors for cancer therapy; this has moved the focus of therapeutic endeavors to effectively enhance or restore T cell tumoricidal activity rather than directly target cancer cells. Both antibodies targeting the checkpoint inhibitory molecules programmed death receptor 1 (PD1), PD-ligand 1 (PD-L1) and cytotoxic lymphocyte activated antigen 4 (CTLA4), as well as bispecific antibodies targeting CD3 and CD19 are now part of the standard of care. In particular, antibodies to checkpoint molecules have gained broad approval in a number of solid tumor indications, such as melanoma or non-small cell lung cancer based on their unparalleled efficacy. In contrast, the efficacy of bispecific antibody-derivatives is much more limited and evidence is emerging that their activity is regulated through diverse checkpoint molecules. In either case, both types of compounds have their limitations and most patients will not benefit from them in the long run. A major aspect under investigation is the lack of baseline antigen-specific T cells in certain patient groups, which is thought to render responses to checkpoint inhibition less likely. On the other hand, bispecific antibodies are also restricted by induced T cell anergy. Based on these considerations, combination of bispecific antibody mediated on-target T cell activation and reversal of anergy bears high promise. Here, we will review current evidence for such combinatorial approaches, as well as ongoing clinical investigations in this area. We will also discuss potential evidence-driven future avenues for testing.

13.
Proc Natl Acad Sci U S A ; 114(49): 12994-12999, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29150554

RESUMO

IL-22 has been identified as a cancer-promoting cytokine that is secreted by infiltrating immune cells in several cancer models. We hypothesized that IL-22 regulation would occur at the interface between cancer cells and immune cells. Breast and lung cancer cells of murine and human origin induced IL-22 production from memory CD4+ T cells. In the present study, we found that IL-22 production in humans is dependent on activation of the NLRP3 inflammasome with the subsequent release of IL-1ß from both myeloid and T cells. IL-1 receptor signaling via the transcription factors AhR and RORγt in T cells was necessary and sufficient for IL-22 production. In these settings, IL-1 induced IL-22 production from a mixed T helper cell population comprised of Th1, Th17, and Th22 cells, which was abrogated by the addition of anakinra. We confirmed these findings in vitro and in vivo in two murine tumor models, in primary human breast and lung cancer cells, and in deposited expression data. Relevant to ongoing clinical trials in breast cancer, we demonstrate here that the IL-1 receptor antagonist anakinra abrogates IL-22 production and reduces tumor growth in a murine breast cancer model. Thus, we describe here a previously unrecognized mechanism by which cancer cells induce IL-22 production from memory CD4+ T cells via activation of the NLRP3 inflammasome and the release of IL-1ß to promote tumor growth. These findings may provide the basis for therapeutic interventions that affect IL-22 production by targeting IL-1 activity.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Interleucina-1beta/fisiologia , Interleucinas/biossíntese , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Meios de Cultivo Condicionados , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Interleucinas/metabolismo , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transplante de Neoplasias , Transdução de Sinais , Carga Tumoral , Interleucina 22
14.
Cancer Immunol Res ; 5(9): 730-743, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28778961

RESUMO

Cancer immunotherapy by therapeutic activation of T cells has demonstrated clinical potential. Approaches include checkpoint inhibitors and chimeric antigen receptor T cells. Here, we report the development of an alternative strategy for cellular immunotherapy that combines induction of a tumor-directed T-cell response and antibody secretion without the need for genetic engineering. CD40 ligand stimulation of murine tumor antigen-specific B cells, isolated by antigen-biotin tetramers, resulted in the development of an antigen-presenting phenotype and the induction of a tumor antigen-specific T-cell response. Differentiation of antigen-specific B cells into antibody-secreting plasma cells was achieved by stimulation with IL21, IL4, anti-CD40, and the specific antigen. Combined treatment of tumor-bearing mice with antigen-specific CD40-activated B cells and antigen-specific plasma cells induced a therapeutic antitumor immune response resulting in remission of established tumors. Human CEA or NY-ESO-1-specific B cells were detected in tumor-draining lymph nodes and were able to induce antigen-specific T-cell responses in vitro, indicating that this approach could be translated into clinical applications. Our results describe a technique for the exploitation of B-cell effector functions and provide the rationale for their use in combinatorial cancer immunotherapy. Cancer Immunol Res; 5(9); 730-43. ©2017 AACR.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos CD40/imunologia , Imunoterapia , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Células Dendríticas/imunologia , Humanos , Imunidade Celular , Interleucina-4/imunologia , Interleucinas/imunologia , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
15.
Mol Biol Cell ; 27(24): 3841-3854, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27708140

RESUMO

TPA-inducible sequence 11b/butyrate response factor 1 (TIS11b/BRF1) belongs to the tristetraprolin (TTP) family of zinc-finger proteins, which bind to mRNAs containing AU-rich elements in their 3'-untranslated region and target them for degradation. Regulation of TTP family function through phosphorylation by p38 MAP kinase and Akt/protein kinase B signaling pathways has been extensively studied. In contrast, the role of cAMP-dependent protein kinase (PKA) in the control of TTP family activity in mRNA decay remains largely unknown. Here we show that PKA activation induces TIS11b gene expression and protein phosphorylation. Site-directed mutagenesis combined with kinase assays and specific phosphosite immunodetection identified Ser-54 (S54) and Ser-334 (S334) as PKA target amino acids in vitro and in vivo. Phosphomimetic mutation of the C-terminal S334 markedly increased TIS11b half-life and, unexpectedly, enhanced TIS11b activity on mRNA decay. Examination of protein-protein interactions between TIS11b and components of the mRNA decay machinery revealed that mimicking phosphorylation at S334 enhances TIS11b interaction with the decapping coactivator Dcp1a, while preventing phosphorylation at S334 potentiates its interaction with the Ccr4-Not deadenylase complex subunit Cnot1. Collectively our findings establish for the first time that cAMP-elicited phosphorylation of TIS11b plays a key regulatory role in its mRNA decay-promoting function.


Assuntos
Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Regiões 3' não Traduzidas , Animais , Células COS , Técnicas de Cultura de Células , Chlorocebus aethiops , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endorribonucleases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Tristetraprolina/metabolismo
16.
Oncoimmunology ; 5(3): e1105428, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27195186

RESUMO

T cell infiltration at the tumor site has been identified as a major predictor for the efficacy of adoptive T cell therapy. The chemokine C-C motif ligand 22 (CCL22) is highly expressed by immune cells in murine and human pancreatic cancer. Expression of its corresponding receptor, C-C chemokine receptor type 4 (CCR4), is restricted to regulatory T cells (Treg). We show that transduction of cytotoxic T cells (CTL) with CCR4 enhances their immigration into a pancreatic cancer model. Further, we show that binding of CCR4 with CCL22 strengthens the binding of T cell LFA-1 to dendritic cell (DC) ICAM-1 and increases CTL activation. In vivo, in a model of subcutaneous pancreatic cancer, treatment of tumor-bearing mice with CCR4-transduced CTL led to the eradication of established tumors in 40% of the mice. In conclusion, CCR4 overexpression in CTL is a promising therapeutic strategy to enhance the efficacy of adoptive T cell transfer (ACT).

17.
Arch Toxicol ; 89(3): 393-404, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24777823

RESUMO

Several studies indicate that the aryl hydrocarbon receptor (AHR), which plays an important role in mediating the toxicity of many industrial chemicals, plays an important role in the physiology of female reproductive tract organs. This makes it likely that the AHR and additional components of the AHR signalling pathway are under the control of female sex steroids. In a previous study, we could already demonstrate the regulation of many members of the AHR battery by 17ß-estradiol (E2) in the uterus of rats. In this study, we addressed the potential role of progesterone (P4) in this context. In a comparative approach using ovariectomized rats which were treated for 3 days with either vehicle control, E2, progesterone (P4) or the combination of both hormones in addition to sham-operated animals, we could demonstrate that in addition to E2, P4 is also an important factor in regulating AHR signalling in the rat uterus. P4 has effects similar to E2 on uterine Ahr, Arnt and Arnt2 mRNA levels, resulting in a downregulation of these genes, while the E2-mediated downregulation of key AHR response genes Cyp1a1, Gsta2 and Ugt1 is completely antagonized by P4. As with E2, P4 leads to an increase in uterine AHR levels, especially in the endometrial epithelium despite the decrease in corresponding mRNA levels. This indicates a complex gene-specific regulatory network involving E2, P4 and possibly AHR itself to maintain all components of the AHR signalling cascade at the required levels during all stages of the oestrous cycle and pregnancy.


Assuntos
Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Progesterona/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Útero/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Endométrio/patologia , Feminino , Imuno-Histoquímica , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Ratos Wistar , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/efeitos dos fármacos , Útero/metabolismo , Útero/patologia
18.
Arch Toxicol ; 86(12): 1873-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22811023

RESUMO

Anabolic-androgenic steroids are frequently misused compounds in sports, and they belong to the controlled substances according to the requirements of the World Anti-Doping Agency. The classical techniques of steroid detection are mass spectrometry coupled to gas or liquid chromatography. Biological methods that base on the ability of substances to bind the steroid receptor are not applied in routine doping control procedures so far, but they appear to be useful for characterization of steroid androgenic potential. In this study we used the yeast androgen receptor reporter system (YAS), which in the past has already successfully been applied to both various androgenic substances and also urine samples. Giving attention to the androgenic potential of steroidal dietary supplements, we exemplified the analysis using both mass spectrometry techniques and the YAS-based assay on the product "Syntrax Tetrabol" which was a confiscated dietary supplement and marketed as a steroid precursor. Identification, structure and the kinetic behavior of its excreted metabolites were analyzed by NMR, GC-MS and LC-MS/MS. The androgenic potential of the parent compound as well as its metabolites in urine was evaluated with the help of the YAS. The application of urine samples with a previous deconjugation and the inclusion of urine density values were carried out and led to increased responses on the YAS. Further, the possibility of a complementary application of structure-based instrumental analysis and biological detection of androgenicity with the help of the YAS seems to be desirable and is discussed.


Assuntos
Anabolizantes/farmacologia , Androgênios/farmacologia , Di-Hidrotestosterona/metabolismo , Di-Hidrotestosterona/farmacologia , Dopagem Esportivo/métodos , Detecção do Abuso de Substâncias/métodos , Ativação Transcricional/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Di-Hidrotestosterona/urina , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidrólise , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Saccharomyces cerevisiae/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray
19.
Arch Toxicol ; 86(10): 1603-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22659940

RESUMO

The aryl hydrocarbon receptor (AHR) is known to mediate the cellular response to numerous xenobiotics including dioxin. Surprisingly AHR knockout mice provide evidence for the involvement of the AHR signalling cascade in estrogen regulated physiological functions of the female reproductive system. Several studies already aimed to investigate the impact of the AHR mediated xenobiotic response pathway on estrogen receptor (ER) signalling, whereas on contrary availability of data describing the effect of 17ß-Estradiol (E2) on the AHR signalling cascade is rather limited. In this study we observed an inhibitory effect of E2 treatment on uterine Ahr, Arnt, Arnt2, Ahrr, Cyp1a1, Ugt1 and Nfe2l2 gene expression in ovariectomized Wistar rats, whereas Cyp1b1, Nqo1 and Gsta2 displayed an increased transcription. The usage of the ER selective agonists, 16α-LE(2) (ERα selective) and 8ß-VE(2) (ERß selective), enabled us to distinguish between ER subtype specific responses. On mRNA level the observed changes in gene expression were mainly mediated by ERα except for the expression of Nqo1. In most cases the activation of ERß caused effects opposite to the ones observed following activation of ERα. Despite the significant changes in AHR mRNA levels immunohistochemical staining uterine tissue section did not reveal changes of the AHR protein level. Taken together our results validate, support and extend the hypothesis of uterine crosstalk between AHR and ER signalling pathways. Furthermore they give an insight into how the AHR and its related genes may participate in E2 dependent uterine physiological processes and provide another potential mechanism of action for xenoestrogens.


Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Útero/metabolismo , Animais , Estradiol/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ovariectomia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Útero/efeitos dos fármacos
20.
Arch Toxicol ; 85(4): 285-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20924560

RESUMO

The routinely used analytical method for detecting the abuse of anabolic steroids only allows the detection of molecules with known analytical properties. In our supplementary approach to structure-independent detection, substances are identified by their biological activity. In the present study, urines excreted after oral methyltestosterone (MT) administration were analyzed by a yeast androgen screen (YAS). The aim was to trace the excretion of MT or its metabolites in human urine samples and to compare the results with those from the established analytical method. MT and its two major metabolites were tested as pure compounds in the YAS. In a second step, the ability of the YAS to detect MT and its metabolites in urine samples was analyzed. For this purpose, a human volunteer ingested of a single dose of 5 mg methyltestosterone. Urine samples were collected after different time intervals (0-307 h) and were analyzed in the YAS and in parallel by GC/MS. Whereas the YAS was able to trace MT in urine samples at least for 14 days, the detection limits of the GC/MS method allowed follow-up until day six. In conclusion, our results demonstrate that the yeast reporter gene system could detect the activity of anabolic steroids like methyltestosterone with high sensitivity even in urine. Furthermore, the YAS was able to detect MT abuse for a longer period of time than classical GC/MS. Obviously, the system responds to long-lasting metabolites yet unidentified. Therefore, the YAS can be a powerful (pre-) screening tool with the potential that to be used to identify persistent or late screening metabolites of anabolic steroids, which could be used for an enhancement of the sensitivity of GC/MS detection techniques.


Assuntos
Anabolizantes/farmacocinética , Metiltestosterona/farmacocinética , Saccharomyces cerevisiae/efeitos dos fármacos , Detecção do Abuso de Substâncias/métodos , Anabolizantes/urina , Bioensaio , Cromatografia Gasosa-Espectrometria de Massas , Genes Reporter , Humanos , Masculino , Metiltestosterona/análogos & derivados , Metiltestosterona/urina , Pessoa de Meia-Idade , Saccharomyces cerevisiae/fisiologia , Detecção do Abuso de Substâncias/estatística & dados numéricos , Espectrometria de Massas em Tandem , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...